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EXECUTIVE SUMMARY 
One of the most important objectives of My-TRAC is to develop an innovative mobile application that can 
act as a companion for travellers, providing them with timely, meaningful, and personalized advice on 
various decisions related to their trips. Understanding the behaviour of decision-makers is crucial to 
providing recommendations. Apart from hard factors, such as minimizing travel time, we need to pay close 
attention to softer factors, such as emotions, attitudes, and perceptions of risk and uncertainty.  

Given the importance of understanding the behaviour of travellers, task 2.3 (T2.3) aims to model the various 
choices travellers make before and during a journey. Specifically, three choice dimensions are considered: 
(i) travel mode (e.g., car, public transport, bicycle), (ii) departure time, and (iii) route choice. We assume 
that these choices are made sequentially and under the random utility maximization paradigm. The selected 
choice dimensions modelled should be sufficient to describe the movement of a traveller from their origin 
to destination. For each choice dimension, the trade-off between all relevant hard attributes (e.g., waiting 
time, in-vehicle time) as well as the effect of attitudinal and perception-based attributes are analysed. Thus, 
the main output of this deliverable, D2.3, is a set of baseline models of the population’s (i.e., average, non-
personalized) behavioural characteristics over different choice dimensions – a framework for analysing 
users’ choices. 

For the analysis, we mainly use stated preferences data collected from three locations where the pilots will 
be conducted, namely, the Netherlands, Greece (Athens), and Portugal (Lisbon). The general workflow 
involved designing the experiment, collecting data (either online or on-site), processing the collected data 
(removing invalid responses, encoding responses for analyses), and through trial-and-error estimating the 
final choice model (which is based on some model fit criteria). The estimated models include information 
about: (i) personal characteristics, including socio-demographics, mobility characteristics, and other 
qualitative factors (e.g., regret, tolerance); (ii) trip contexts, including trip purpose and other factors 
describing conditions under which the trip is made; and (iii) attributes of available (and considered) 
alternatives. Therefore, we are able to discuss how travellers of different backgrounds and personalities 
behave in different travel situations. 

For mode choice, hard factors such as travel time, cost, and comfort are considered. Amongst the choices 
offered in the experiment were car, public transport, bicycle (in the Netherlands), and motorcycle (in 
Greece and Portugal). Departure time choice is between depart ‘on time’, ‘early’, or ‘late’, and is only 
modelled for public transport modes, considering travel time, walking time (to station), frequency of 
vehicles, and fare discount (as percentage) as the main alternative attributes. We discuss the effect of 
different attributes in detail, also comparing results across pilot locations and with literature.  

For route choice, three models are presented. In the first model, the focus is on capturing waiting time 
uncertainty that travellers in public transport networks feel. This is done through a stated preference 
experiment with a novel choice situation that permits the quantification of subjective beliefs regarding 
uncertainty as well as the effect of context and personal characteristics on this uncertainty. Findings 
indicated an average preference for certainty, with travellers willing to accept between 3 and 10 minutes of 
extra in-vehicle time to avoid uncertainty in waiting time. We further report the effects of context and 
personal characteristics on beliefs regarding uncertainty for the three countries.  

As more and more data becomes available, through the My-TRAC application and other sources, revealed 
preferences will be the main source for behaviour analyses and consumer studies in the future. To this end, 
the next two route choice models focus on studying revealed preferences from the pre-dominant source of 
such data today: smart card data. The first model in this category develops a methodology to automatically 
calibrate the composition of route choice sets using the non-compensatory elimination-by-aspects decision 
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rule. Analysing the alternatives considered by decision-makers when choosing is critical to both accurate 
behaviour modelling as well as presenting application users with appropriate options.  

In the third and final route choice model (also estimated from smart card data), we present a comparison of 
different representations of risky waiting time in choice models. To do this we first outline a generic 
methodology to estimate route choice models from revealed preference data sources. Comparison results 
show the importance of including information on both deviation from schedule and dispersion of waiting 
times in choice models. 

Finally, the activity model developed in two other deliverables (D2.2, D3.3), is briefly presented here to align 
with the complete set of user choices. Moreover, the data required for re-estimation of the models (based 
on continuous observations from the My-TRAC application) described in this deliverable using such data are 
also tabulated. 

In conclusion, this deliverable produces a set of baseline population choice models that may be 
personalized to individuals and provide recommendations in subsequent tasks of this project using 
continuous observations from the My-TRAC application. Apart from this, the scientific contribution 
highlights a few avenues for future research. For instance, more research is required on better connecting 
attitudes and perceptions with eventual travel behaviour. Specifically, methodologies that allow us to 
separate the effects of the different aspects will be helpful in providing more targeted and meaningful 
policies. Another important area, is to use revealed preferences to study the effects of situational contexts 
on choice behaviour, which stated preferences may not be able to fully capture. 
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1 INTRODUCTION 
One of the most important objectives of My-TRAC is to develop an innovative mobile application that can 
act as a companion for travellers, providing them with timely, meaningful, and personalized advice on 
various decisions related to their trips. Understanding the travel behaviour of users is crucial to providing 
recommendations. To this end, within the My-TRAC project, work package 2 (WP2) focusses on ‘user-
centred behaviour and analysis’. After identifying key factors affecting travel behaviour in deliverable 2.1 
(D2.1), in this deliverable for task 2.3 (T2.3) we focus on modelling travellers’ choices. In this introductory 
section, we will first briefly argue why describing travel behaviour is important for providing useful 
recommendations and to which aspects we must pay special attention. Next in section 1.2, the objective of 
this task, its output, the general methodology, and relationship with other parts of the project are 
presented. For practical reasons, we make some general assumptions in the choice modelling parts of the 
report; these are presented in section 1.3. Finally, the deliverable structure is outlined in section 1.4. 

1.1 WHY MODEL BEHAVIOUR? 

In everyday life, we see a lot of recommendations; for instance, the next video auto-played on YouTube, an 
advertisement recommending that we buy a particular brand of cereal, or an investment portfolio 
recommendation. Clearly, each recommendation has a different purpose which describes what the 
recommender would like the decision-maker to do. Regardless of the intention of the normative action (i.e., 
what should be done), each recommender, in general, and each recommendation, specifically, must have 
one. However, often defining normative behaviour is not as straightforward increasing the sale of a 
particular brand of cereal. Consider the case of investment portfolio composition. For a ‘rational’ (basically, 
the investor must like more money than less – see Kreps [1] for the specific behavioural axioms required) 
investor of a particular level of wealth and intended investment period, given historical data, there exists an 
optimal portfolio which should be recommended as it maximizes expected returns. Yet, before providing 
any recommendations, an investment advisor would first assess the investor’s risk profile which indicates 
the level of risk with which the investor is comfortable. This indicates that the normative action is not as 
simple as maximizing one’s profit but something more complicated and personal. In contrast, personal 
preferences may also be used to remove biases such as risk aversion or loss aversion [2], in order to provide 
suggestions that are objectively more rational. Furthermore, to provide impactful recommendations, it is 
necessary understand what affects decision-makers most. For instance, cereal brands may want to know 
what consumers are interested in (e.g., iron content of cereal) so that those aspects can be emphasised in 
advertisements. Similarly, if the aim of an online media provider is to keep users on their platform for as 
long as possible, then they may suggest the next video based on users’ past views and search histories. A 
related consideration may be the timing of advice – depending on our aim we would like decision-makers to 
either make a conscious, calculated decision (change their behaviour or reinforce their current behaviour) 
or we would like them to unconsciously maintain the status quo (for e.g., keep watching videos or scrolling 
through social media) (see [3] and [4] for notes on when and how decision-makers decide when to decide). 

From the above discussion, it is clear that understanding the behaviour of decision-makers is crucial to 
providing recommendations. Apart from hard factors, such as maximizing profit, we need to pay close 
attention to softer factors, such as emotions, attitudes, and perceptions of risk and uncertainty. In the 
context of My-TRAC, recommendations are on various decisions related to travelling, such as when to leave 
or which route to take. Here, the normative action is a benevolent one wherein we would like to provide 
recommendations that, as a travel companion, are as useful as possible to the travellers. Therefore, it is a 
complicated construct accounting for preferences in different aspects of travelling (as opposed to just 
minimizing total travel time) as well as various soft factors. To this end, a construct such as the travel 
happiness concept, exemplified in D2.1 of this project, may be used to define the end target (i.e., 
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maximizing happiness). For instance, some travellers will be happier with longer travel times if the comfort 
level in that travel mode is high enough (see section 2.4), or if that removes uncertainty related to waiting 
for a train (see section 3.1), or if, in general, that route is more reliable (see section 3.3). 

1.2 TASK 2.3 OBJECTIVE, WORKFLOW, AND POSITION IN MY-TRAC 

Given the importance of understanding the behaviour of travellers, T2.3 aims to model the various choices 
travellers make before and during a journey. These choice dimensions modelled should be sufficient to 
describe the movement of a traveller from their origin to destination. For each choice dimension, the trade-
off between all relevant hard attributes (e.g., waiting time, in-vehicle time) as well as the effect of 
emotional, attitudinal, and perception-based attributes have to be analysed. Ultimately, the output of this 
task, T2.3, is a set of baseline models of the population’s1 behavioural characteristics over different choice 
dimensions – a framework for analysing users’ choices. 

Figure 1.1 shows an overview of the general workflow of this task (T2.3). As shown, estimating the set of 
baseline choice models involves several steps. First we need to decide the choice dimensions and any 
interdependencies that have to be modelled. Then, for each of these choice dimensions, we hypothesise 
which attributes are relevant and which decision rule/s is/are used by travellers. These hypotheses may 
come from literature on the different choice dimensions but also be informed by D2.1 of this project. In 
order to model choice behaviour suitable preference data must be collected. When the data is obtained 
from a stated preferences experiment, this step is preceded by an experiment design step. After suitable 
data processing, the baseline choice models can be estimated to obtain population behavioural 
parameters. Based on continuous observations from the My-TRAC application (for example from the pilots 
in WP6), the baseline models developed in this task (T2.3) can be personalized to individuals and thus 
provide personalized recommendations to individual travellers in subsequent tasks of this project (WP3). A 
potential framework for My-TRAC application to assist travel related decisions in a personalized manner has 
been described in D2.1 under the broader concept of travel happiness. 

 

 

Figure 1.1: General workflow of Task 2.3 

1.3 GENERAL ASSUMPTIONS 

Choice dimensions 

In the conventional transportation models, four-steps are considered [5]: (i) trip generation, (ii) trip 
distribution, (iii) departure time choice/modal split, and (iv) assignment (route choice). The first two steps 
                                                                    
1 By population behavioural characteristics we mean the average behavioural patterns found in the 
population of travellers. 
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are related to estimating traveller demand in the network whereas the subsequent steps relate to different 
choices travellers. In this task, these three choice dimensions (mode, departure time, route) are modelled. 
Note that departure time is not the same as the time of day choice (e.g. morning rush hour) which is 
typically dictated by travel purpose. The dependencies between these different choice dimensions may be 
modelled in a number of ways. Ideally, the order in which choices are made are also hypotheses to be 
tested under different situations. However, given the practical needs of task distribution and the time 
available for this task, the three choices are assumed to be made independently and sequentially. Travellers 
are assumed to first choose their modes, then the departure time, and, finally, the route choice. 

Decision rules 

Regarding decision rules, the multinomial logit (MNL) under the random utility maximization framework 
has long dominated the field of choice analysis because, although, the model consists of a few drawbacks 
(e.g., independence of irrelevant alternatives), it is quite strong on many other fronts. The main advantages 
of the MNL model are that it is intuitive, simple to formulate, and because of its closed form, can be 
analytically solved, meaning that it can be applied to large datasets very efficiently. Therefore, with an eye 
on the practical nature of this work, we assume MNL as the default decision rule. 

Data collection 

For all three choices, we use stated preference experiments to collect data. While these experiments are 
conducted in three of the countries where the pilots are to be conducted, the Netherlands, Greece, and 
Portugal, unfortunately, we did not have the resources to conduct a separate experiment in Spain. Within 
the framework of T2.1, a questionnaire survey was conducted as well aiming at identifying the most 
significant factors affecting travel behaviour. Exploiting the data collected and thoroughly presented in 
D2.1, we performed a comparison between travel related choice attitudes of travellers in Spain with those 
in other countries. We found that they behaved most similar to travellers in Greece (see Appendix A) and 
therefore models developed for Greece will also be used to describe travel behaviour in Spain as well. Data 
collected in the My-TRAC application may later be used to re-calibrate the model specifically for travellers in 
Spain. 

For route choice models, in addition to stated preferences, we also make use of revealed preferences from 
smart card data. Unfortunately, such data could only be procured for the Netherlands and therefore 
models using revealed preferences are developed for Dutch travellers. 

1.4 DELIVERABLE STRUCTURE 

In the next two sections, choice analyses for the three dimensions discussed above are presented: mode 
and departure time choice in section 2 and route choice in section 3. In both of these sections, the different 
steps shown in the general workflow (Figure 1.1) above are discussed in detail. Mode and departure time 
choices are observed through a stated preferences experiment. For route choices, however, we present 
three different models that analyse behaviour in this dimension using different data sources. In the first 
model, the effect of uncertainty is analysed also using a conventional stated preference experiment. For 
the next two models, we use revealed preferences from smart card data. By demonstrating how revealed 
preferences may be used, we can also take advantage of the data collected in My-TRAC later. In these 
models, first a methodology to automatically calibrate the composition of route choice sets is laid out 
followed by a comparison of different representations of risky waiting time in choice models. In section 4, a 
brief discussion on modelling of activities, carried over from D2.2 and D3.3 is presented. Section 5 presents 
the data requirements required for the development of the choice models presented here for use in the 
pilots (see WP6). Finally, we conclude the deliverable, summarising the various parts of the report, 
highlighting important results, and proposing avenues of future research. 
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2 MODE AND DEPARTURE TIME CHOICE  
Travel behaviour, as any other human behaviour is always changing based on the conditions, people’s 
perceptions and preferences. Travellers are engaging in a variety of alternatives when planning their trip 
which are usually evaluated through a utility function 𝑈𝑈𝑗𝑗𝑖𝑖, describing the importance of each parameter to 
the decision-making process. The most common formulation of the utility function is the following [6]: 

  𝑈𝑈𝑗𝑗𝑖𝑖 = ∑ 𝛽𝛽𝑘𝑘𝑋𝑋𝑘𝑘𝑘𝑘  
𝑛𝑛
𝑘𝑘=1  (2.1) 

where Xkj represents both choice makers’ (i) characteristics and choice alternatives (j) attributes and βk the 
corresponding weights. The utility maximization theory assumes that the decision-maker is rational and 
consistent. This means that the decision-maker will always choose the best alternative (maximum utility) 
given all the available information. 

The literature highlights a plethora of factors that affect travel choices, which may be predetermined for 
the traveller, factors that change in every trip, trip’s attributes and system’s characteristics. Some recent 
studies have also highlighted the importance of affective factors (emotions, feelings), such as travel 
happiness in the decision-making process of travelling [7]. In the era of new services in transportation and 
intelligent transportation systems, current requirements and behaviours of the travellers need to be 
revised and new needs and travel actions should be defined, basically for three main reasons: 

1. Urban transportation landscape is constantly changing with new services being introduced to the 
system, such as car sharing, carpooling and bike sharing. Thus, travellers have a variety of travel 
mode alternatives to consider while planning their trip and therefore, factors that are considered 
may be different from the traditional ones (travel cost, travel time) [8]. 

2. Travellers have access to all the essential information concerning their daily travel, mode and route 
alternatives, due to high penetration rates of information and communication technologies in our 
lives [9]. This fact results in having travellers with increased needs and requirements over the 
system and with different preferences. In order for the policy makers and system operators to 
meet their users’ needs and requirements travel behaviour models have to be re-examined. 

3. EU has committed to reduce greenhouse gas emissions with special emphasis on those coming 
from the transport sector. The massive use of private vehicles for everyday travel is one of the 
maim causes of air pollution and therefore needs to be reduced in order for the EU to achieve its 
goals. To this end, policy and decision makers need to identify parameters that raise the 
attractiveness of public transport and in addition define strategies to promote public transport 
usage and ecological travel modes as well (e.g., bicycle, walking) as more eco-friendly alternatives 
to private vehicles. 

In this context, the My-TRAC project aims to re-estimate the importance of well-known factors that drive 
travel behaviour nowadays and include some affective parameters that seem to affect decision-making 
when planning to travel or while travelling. As thoroughly discussed in D2.1, both cognitive and emotional 
factors are taken into consideration in order for My-TRAC application to properly recommend those travel 
alternatives that fulfil the requirements and preferences of each user. To this context, the notion of travel 
happiness was introduced and highlighted the manner in which traditional utility-based models can be 
enriched with affective parameters that describe users’ perception on the system and users’ individual 
preferences. Each of the three travel choices (see section 1.3) made by an individual before travelling were 
considered when travel happiness was studied. In this deliverable we focus on developing the utility 
functions for each of the alternatives of the three travel choices, which is the main component of the travel 
happiness function (for more details see D2.1). 

In this section, we focus on the first two components of travel behaviour, namely travel mode and time of 
departure choices. First, we investigate factors affecting travel mode choices and then time of departure 
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choices are analysed specifically in the case where PT is used. These choices are seen as two distinct steps 
and therefore the modelling part was conducted independently. To investigate the factors that affect travel 
related choices, based on the most relevant literature in the field of travel behaviour analysis [10-13] two 
multinomial logistic regression models   were developed. The methodological approach and the data used 
for this purpose are thoroughly presented in the next sections. 

2.1 METHODOLOGY 

The identification of the factors that affect travel mode choice and time of departure choice decisions for 
everyday trips is a very interesting topic which has been exhaustively studied in the literature [10, 14]. Every 
day trips are performed from both commuters and non-commuters. Models developed here describe 
choices of both of them. Only in section 2.3.1 we make a comparison between the two groups if the findings 
are interesting. Such an investigation of the affecting parameters requires the formulation of a discrete 
choice model which predicts an individual’s choice based on utility theory [11]. In the presence of more than 
two alternatives in the choice set, multinomial logistic regression models appeared. Multinomial logistic 
regression is the regression analysis conducted when the dependent variable is nominal with more than 
two levels.  

For the identification of the factors that affect travel mode choices and time of departure choices, 2 distinct 
multinomial logistic regression models were developed. The parametrization of the two models is different 
for the Netherlands, and for Greece and Portugal due to different transportation system conditions as well 
as users’ characteristics. The methodological approach followed for the development and evaluation of 
these models (Figure 2.1) is performed through 9 steps which are presented and briefly described below: 

1. Data collection 
2. Data cleaning 
3. Data transformations 
4. Dataset preparation (Scenarios codification) 
5. Create training and test set 
6. Feature selection 
7. Train the model  
8. Model evaluation 
9. Prediction 

 

Figure 2.1: Aggregated methodological steps 

 

First, data collected through questionnaire surveys, were cleaned in order to remove fault and erroneous 
answers. Then, data were transformed following well known techniques, such as category aggregation of 
Likert scales (e.g., a 5-point Likert scale was transformed to a 3-point Likert scale) [15]. Once the dataset 
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was ready, data were then coded in a proper way for the analysis (e.g., for mode choice: car = 0, PT = 1, 
bicycle = 2). The analysis of the sample of each country was conducted using R which is a programming 
language for statistical analysis. 

Data were split into training and test sets with the corresponding proportions being 80% and 20%. In typical 
supervised learning analysis, the training set is used for the development of the model, while the testing set 
is used for the evaluation of the final model. 

Using the training set, several R packages were used for an automatic subset selection of the most 
significant variables to be included in model training process. The best subset of the variables is selected 
after an exhaustive search of several model formulations, by means of several measures such as Akaike’s 
information criterion (AIC), Bayesian information criterion (BIC), adjusted R2, etc. 

The Multinomial Logistic Regression model was developed using the “mlogit” R package which deals with 
datasets that include stated preferences scenarios [16]. The model with the best goodness-of-fit measures 
is selected (AIC, Log-Likelihood, R2). Lastly, the final model is used for performing prediction over the test 
set whose prediction capability was evaluated by taking into account accuracy, precision, recall and area 
under the curve metrics. 

2.1.1 THE MULTINOMIAL LOGIT MODEL 

In the simple MNL model, the utility to person n from choosing alternative j in choice scenario t is given by 
equation (2.2): 

  𝑈𝑈𝑛𝑛𝑛𝑛𝑛𝑛 = 𝛽𝛽𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 + 𝜀𝜀𝑛𝑛𝑛𝑛𝑛𝑛        𝑛𝑛 = 1, … , 𝑁𝑁; 𝑗𝑗 = 1, … , 𝐽𝐽; 𝑡𝑡 = 1, … , 𝑇𝑇 (2.2) 

where xnjt is a K-vector of observed attributes of alternative j, β is a vector of utility weights (homogenous 
across users), and εnjt ∼ i.d. extreme value is the “idiosyncratic” error [17]. 

In such a model, a “base” should be defined to indicate the category that is used as the baseline 
comparison group. In the specific case of the two models produced by the present task, the utility function 
of the car as well as the utility function of departing early are not a function of user-specific variables, but 
rather only a function of alternative-specific variables. 

The MNL model is a widespread approach to assess the effect of explanatory parameters on the dependent 
variable if the latter takes more than two distinct values. In the case of travel related choices, MNL models 
assume that the traveller possesses a utility for each alternative and that they will adopt the alternative that 
maximizes the utility [13].  

2.2 EXPERIMENT DESIGN 

A well-known data collection process that is traditionally used for collecting travel behaviour data is stated 
preferences survey. For the purpose of My-TRAC, 3 distinct questionnaires were created, and the 
corresponding data collection was conducted in three countries: The Netherlands, Greece and Portugal. 
The questionnaires used for each site’s survey followed the same structure, although some of the questions 
were modified in order to conform to site-specific constraints and characteristics. It should be noted that 
modifications were introduced only to facilitate the data collection process and do not affect the content or 
the structure of the questionnaire. 

2.2.1 QUESTIONNAIRE DESIGN 

The questionnaire designed in order to capture travel mode choice and time of departure choice decisions, 
consisted of 3 parts and 12 questions as well as several stated-preferences scenarios.  
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The first part of the questionnaire attempts to identify respondent’s mobility profile. To this end 
respondents were asked to indicate their usual trip purpose, the frequency of usage of each travel mode 
per week as well as the number of trips performed for their most usual trip purpose. Moreover, this part of 
the questionnaire included questions about work time flexibility and public transport pass possession. In 
addition, the importance of arriving on time was stated in a 3-point scale for each of trip purposes (work, 
leisure, other). Finally, respondents were asked to indicate their level of happiness during their everyday 
trips in a 5-point Likert scale, from 1 (very unhappy) to 5 (Very happy). 

The second part of the questionnaire included stated preferences scenarios which were created using the R 
package ‘AlgDesign’ [18, 19]. The first step is to create a full factorial design by defining the number of levels 
for each of the factors included in the scenario and the number of alternatives included in the choice set.  

For the travel mode scenarios, the full factorial design consists of (3x2x2) 12 combinations of the levels of 
each factor. Table 2.1 provides the explanation of the variables presented in each scenario. Travel cost for 
public transport is different for regular users or users who are entitled to a reduced fare, compared to a 
single ticket. Travel time is set to take 3 different values while level of comfort is either low or high. 

 

Table 2.1 Description of variables related to attributes of travel mode selection scenarios 

Variable Description Range Distinct values 
for each alternative 

Travel time (in mins) Total travel time of the trip 3 

Cost (in euros) Generalized travel cost of the trip 2 

Level of comfort Level of comfort based on both traffic conditions and 
level of crowdedness as well as on the occurrence of 
unexpected events. 

2 

In the case of time of departure scenarios for PT, the full factorial design includes (3x2x2) 12 scenarios in the 
case of Greece and Portugal and (3x2x2x2) 24 combinations in the case of the Netherlands. The 
corresponding levels and the description of the attributes is provided in Table 2.2. The scenarios included 
total travel time from origin to destination and walking time for each of the alternatives, frequency of mode 
as well as fare discount which depends on the time using the travel mode. In the case of Greece and 
Portugal there was no fare discount. 

Table 2.2 Description of variables considered in time of departure choice decisions 

Variable Description Range of values for 
each alternative 

Travel time (in mins) Total travel time of the trip (including in vehicle time 
and walking time) 

3 

Walking time (in mins) Sum of time for reaching the station and time reaching 
the destination 

2 

Frequency (per mins) Time distance between two successive trains 2 

Fare discount Fare discount for regular users or users that are entitled 
a reduced fare 

2 

Subsequently, a fractional factorial design is applied in order to reduce the number of the scenarios and 
make the questionnaire more flexible. To do so, the optFederov() command from R package ‘AlgDesign’ 
was used and the minimum number of scenarios was estimated by optimizing the D-criterion [20].  
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Finally, 6 stated preferences scenarios concerning travel mode choice decisions were presented to the 
respondents. An example is given in Table 2.3. The scenarios were supposed to be answered for a 
hypothetical trip of 10km at 8:00 am, with available travel mode alternatives being car, public transport 
(train and metro) and bicycle for the Netherlands, car, public transport and motorcycle for Greece and 
Portugal. The scenarios included total travel time per mode and costs per mode for the particular trip, 
together with the comfort level. The level of comfort depends on the traffic conditions, crowdedness and 
other events (expected or unexpected) that may affect the conditions of the trip. 

Table 2.3 Example of stated preferences scenario for travel mode choice (Dutch questionnaire) 

 Car PT Bike 
Travel Time (in mins) 35 30 25 

Cost (in euros) 5 2 0 
Level of Comfort High Low Low 

Select    

Then, stated preferences scenarios concerning time of departure choice (Table 2.4) were presented 
assuming that the traveller performs the specific trip by public transport. The respondent was provided 
with three alternatives: Departing earlier, on time or later.  

Table 2.4 Example of scenarios for time of departure choice (Dutch questionnaire) 

 Early On time Late 
Travel Time (in mins) 30 45 30 

Walking time (in mins) 20 10 20 
Frequency (per mins) 5 3 7 

Fare discount 0% 20% 40% 
Select    

 

The last part of the questionnaire included the demographics of the respondents: gender, age, education 
level, total annual personal income, occupation and household size. 

An overview of the content of the questionnaire is depicted in Figure 2.2 

 

Figure 2.2 Description of Questionnaire parts 
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2.3 DATA COLLECTION 

The questionnaire described above was translated in three languages (Dutch, Greek and Portuguese) and 
then was used for data collection in each of the corresponding countries. The three questionnaires share a 
common structure and content although small modifications were introduced to in order to fulfil each site’s 
transport network constraints. The corresponding questionnaires are provided in Appendix B. 

The survey in the case of the Netherlands was conducted online through the PanelClix platform. First, a test 
round was conducted in order to identify potential issues on the completion of the questionnaire. Then, a 
second round of the survey was conducted with a total duration of 4 days. The raw data included 739 
responses, but after excluding malicious and fault answers2, the final dataset includes 737 unique 
responses. For the Greek case, the questionnaire survey was conducted onsite using the electronic version 
of the questionnaire, created using Google Forms. The survey took place in critical points of the Athens 
metropolitan area such as the campus of the National Technical University of Athens, metro stations and 
other key areas. The survey had a total duration of approximately 1 month (February - March 2019). In 
Portugal, questionnaire survey took place both online and onsite (in Lisbon) where 362 respondents 
participated. In this case as well, the survey had a total duration of 1 month (March – April 2019). 
Continuous monitoring of the quality of the sampling during the data collection process, resulted in having 
350 and 362 responses from Greece and Portugal respectively, which were ready to be used for the 
modelling part.  

 

Figure 2.3 Study area 

                                                                    
2 Household size>10  

Lisbon (Portugal) 
 Sample: 362 

Athens (Greece) 
 Sample: 350 

The Netherlands 
Sample: 737 
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2.3.1 DESCRIPTIVE STATISTICS 

This section provides a complete overview of the data collected from the questionnaire survey in all three 
countries. In addition, a preliminary comparison between the responses of the three samples is performed. 
The results are presented in diagrammatic and table formats and follow the categorization of the questions 
in the questionnaire. 

2.3.1.1 DEMOGRAPHICS 

This section studies the socio demographics of the sample per country of the study area. In general, the 
sample is balanced among males and females (Figure 2.4) and each age category is well presented (Figure 
2.5). It is observed that travellers between 18 and 24 years old are a bit underrepresented in the sample of 
the Netherlands, although the rest of the sample is well distributed among age groups.  

The Netherlands Greece Portugal 

 

 

 

Figure 2.4: Gender distribution per country 

 

The Netherlands Greece Portugal 

   

Figure 2.5: Age distribution per country together with gender distribution of each age category 

 

As shown in Figure 2.6, most of the respondents work as private employees, while 10.9% of the Dutch 
sample are Public Servants while in Greece the corresponding rate is 20.3%. Moreover, in the case of Greece, 
the sample includes students account for 23.7% while unemployed people account for 2.9%. In the case of 
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Portugal, students, unemployed and retired people are almost equally represented with each of them 
accounting for almost 10% of the sample. 

 
Figure 2.6 Rates per occupation of the sample 

Regarding higher level of education of the respondents, Figure 2.7 shows that the vast majority of the 
sample in the Netherlands has either a professional degree or has graduated from high school. On the other 
hand, in the rest of the countries, the majority of the sample hold a bachelor’s degree. In all three countries, 
people holding a doctoral degree are overrepresented in the sample. 

 

Figure 2.7 Higher level of education of the participants 

As shown in Figure 2.8, travellers with high total annual personal income are not well presented in the 
sample. On contrary, most of the respondents in all three countries stated that they obtain a medium 
income per year.  
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Figure 2.8 Total annual personal income 

Concerning the number of household members, based on the results presented in Table 2.5, in Greece the 
majority of the sample (31.1%) stated that they belong in a 4-member family, while the corresponding results 
for the Netherlands and Portugal are 20.4% and 19.9%. 

Table 2.5 Household size per country 

Household size The Netherlands Greece Portugal 
1 19.4% 14.6% 16.3% 
2 36.5% 25.4% 22.1% 
3 16.0% 22.3% 31.8% 
4 20.4% 31.1% 19.9% 

>4 7.7% 6.6% 9.9% 

2.3.1.2 MOBILITY PROFILE 

In this section, some interesting insights on how travellers on each country prefer to perform their 
everyday trips are provided. Results are presented with a distinction among commuters and non-
commuters. Commuters are considered those travellers whose most usual trip purpose is work and in 
addition, they perform more than 4 trips per week for this purpose. The allocation of the sample between 
commuters and non-commuters is depicted in Figure 2.9. 

 

Figure 2.9 Commuters vs non-commuters in the dataset 

In the Netherlands, 65.8% of the sample stated that they do not own a public transport seasonal pass will 
the corresponding percentage of the Greek sample was 40.6%. On the contrary, in the case of Portugal, 
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public transport pass holders account for almost half of the sample. The corresponding results are 
presented in Figure 2.10. 

 

Figure 2.10 Public Transport Pass possession 

As far as work time flexibility is concerned, Figure 2.11 shows that most of workers in the Netherlands and in 
Portugal have fixed working hours. Nevertheless, a considerable amount of the sample (34 – 36%) in all 
three countries stated that they have flexible working hours. 

 

Figure 2.11 Work time flexibility  

Figure 2.12 indicates that the level of travel happiness follows almost a normal distribution in the case of 
Greek travellers. On the other hand, for the rest of the samples, travel happiness distribution is slightly left 
skewed. The average value of travel happiness for Greece, Portugal and the Netherlands were estimated 
3.06, 3.41 and 3.41 respectively. Such results indicate that travellers in Greece feel less happy during their 
everyday trips when compared to the travellers of the two other countries. These results may be related 
with the level of service of the transportation system or may indicate the overall desire of travellers to 
perform trips on a daily basis.  
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Figure 2.12 Distribution of the level of travel happiness in the three countries 

Based on the results illustrated in Figure 2.13, the majority of commuters (64%) in the Netherlands are using 
in a daily basis their private vehicle while only 30.1% of them commute by public transport. Interestingly, 
results indicated that 35.5% of the non-commuters use bicycle as a means of transport for their everyday 
trips.  

In the case of Greece, commuters choose to perform their everyday trips either by private vehicle or public 
transport, while only 5.6% of them commute by motorcycle. On the other hand, most of the non-commuters 
prefer to use public transport for their everyday trips, with the corresponding percentage being 36.7%.  

Results in the case of Portugal are very similar to those of the Greek sample. More specifically, the vast 
majority of commuters prefer to travel to work by car or by public transport. Interestingly, there is also a 
considerable percentage of commuters who choose to travel at least 1 time per week by motorcycle, for 
work purposes. 
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Non-commuters 
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Portugal 

Commuters 

Non - commuters 

Figure 2.13 Travel mode share with distinction between commuters and non-commuters 

 
One of the main aspects when investigating departure time is traveller’s flexibility. The most 
straightforward measure of flexibility for commuting trips is to account for arrival time constraints at work 
[21]. As shown in Figure 2.14, most of the travellers in the Netherlands (76%) consider very important 
arriving on time when travelling for work. The same applies for the rest of the countries, although the 
corresponding percentage in the case of Portugal is considerably smaller (61%). On the contrary, the 
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majority of travellers in all three countries of study consider as somewhat important arriving on time when 
travelling for leisure or other personal purposes. Interestingly, almost 23% of travellers in Portugal stated 
that arriving on time when travelling for leisure purposes is not important at all. 

 

Figure 2.14 Importance of arriving on time per trip purpose 

Results presented here indicate generally well-balanced datasets for all three countries with adequate 
distribution among gender, different age groups and occupations. The analysis of the data collected 
through the questionnaire surveys highlights the existing differences between the countries examined here 
and thereby highlights the need of conducting the analysis separately. 

2.4 MODEL IMPLEMENTATION, RESULTS , AND DISCUSSION 

For the implementation of the MNL models, a country-specific approach was followed due to the diversity 
of travel behaviour of users in each country and the differences in the transportation network. Each 
country’s transportation system offers a specific set of alternatives when it comes to available travel modes 
and in addition, the same travel mode may be considered worst in terms of level of service in different 
countries. The ultimate goal of our approach is to develop choice models that are easy transferable, and 
their results may be applied in different cities and different networks. 

Based on the above, the model developed using data from the Netherlands, which was the biggest sample 
available, was the first model to be estimated and therefore some of the parameters that were dimmed 
significant for it, were tested for being included in the rest of the models.  

2.4.1 TRAVEL MODE CHOICE 

Urban transportation systems offer a plethora of travel mode alternatives to travellers regarding their 
everyday trips. The various means of transport can be classified into three types: ecological means of 
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transport, such as walking and cycling, private vehicles, such as car and motorcycle and public transport 
(bus, tram, train and metro). 

Travel mode choices vary with person characteristics such as age and gender [22, 23], as well as household 
characteristics such as income, house location, and transport availability [24]. Moreover, studies have 
highlighted the importance of trip purpose and environmental characteristics, such as land use, when 
comes to travel mode choice decisions [25]. During the last decade some researchers have investigated the 
importance of affective factors in the decision-making process of travelling [26]. More specifically, some 
studies have introduced the notion of travel happiness which actually reflects the general feeling that 
someone experiences during their everyday trips [7, 27].  

As mentioned before, travel mode decisions, as any other travel related decision, are usually being 
investigated through utility theories [28]. Utility theory assumes that the traveller is rational and consistent 
which means that they will always choose the best alternative (maximum utility) given all the available 
information. Nevertheless, there is no single method to determine what drives travel mode choice 
decisions, neither of why travellers prefer one travel mode over the others under specific circumstances 
[29].  

The aim of the My-TRAC application is to provide useful recommendations to the users concerning their 
everyday trips. Furthermore, it is aimed at providing such recommendations by requiring the minimum 
input from the user. To this end, the model developed for the prediction of travel mode for each trip 
requires as input those variables that describe the characteristics of the trip, user’s characteristics as well as 
the predicted trip purpose (D2.2). The output of the model is an estimated probability for a user selecting 
one of the alternatives within the choice set. The set of choices defined for the purpose of travel mode 
choice modelling is the one depicted in Figure 2.15. 

 

Figure 2.15 Travel mode choice model – Set of alternatives 

User characteristics are asked from the user once the latter first registers in the My-TRAC application. In this 
user’s first contact with the application, a sign-up questionnaire is completed and basic sociodemographic 
information about the specific user is gathered. On the other hand, trip attributes such as travel time and 
travel cost are estimated using Open Trip Planner at the time the user plans a specific trip. Trip purpose for 
each trip is predicted through My-TRAC application (for further details refer to D2.2 and below in Section 5). 
For a thorough discussion on data requirements see section 5. 

For each country, several model formulations were tested with the MNL structure and the formula with the 
best goodness-of-fit values is presented. As dependent variable for the model was used the selected travel 
mode and as independent variables were used the following: 

- Trip purpose (1:Work/0:Other) 
- Travel time 
- Travel cost 



Deliverable 2.3: Modelling framework 
for analysing users’ choices Page 30 of 121  

 

- Level of comfort (0:Low/1:High) 
- Age (1-6) 
- Occupation (1-6) 
- Number of trips performed by PT per week (0:Never – 3:Daily) 
- Number of trips performed by car per week (0:Never – 3:Daily) 

During the training phase of the models, several model formulations were tested and assessed using AIC 
criterion and Log-likelihood tests [12]. Then, the model with the best goodness-of-fit measures is finally 
selected and its prediction ability is tested using well known measures of accuracy and area under the ROC 
curve. 

2.4.1.1 THE NETHERLANDS 

In the case of the Netherlands, the MNL model which describes factors affecting travel mode choice, has an 
estimated McFadden R2: 0.15, which means that the model captures accurately 15% of the phenomenon. 
Nevertheless, when human behaviour and decision-making is being modelled, Mc Fadden stated that a R2 
between 0.10 – 0.40 indicates a well fitted model [30]. As base alternative travel mode was considered 
“car”. The results of the utility function of public transport and bicycle are summarized in Table 2.6. 
 

Table 2.6 Multinomial Logistic Regression model for the Netherlands – Travel Mode choice model 

Variables 
Public Transport  Bicycle 

Coeff. Std. Error Pr (>|z|)  Coeff. Std. Error Pr (>|z|)  
(Intercept) 0.849    1.60    
Travel Cost -0.167 0.014 0.000 *** -0.167 0.014 0.000 *** 
Travel Time -0.046 0.003 0.000 *** -0.046 0.003 0.000 *** 
Level of Comfort 0.525 0.042 0.000 *** 0.525 0.042 0.000 *** 
Age -0.143 0.041 0.001 *** -0.078 0.04 0.05 * 
Trip purpose -0.364 0.166 0.028 * -0.572 0.154 0.000 *** 
Numb. of trips by car -0.572 0.058 0.000 *** -0.689 0.058 0.000 *** 
Numb. of trips by PT 0.683 0.051 0.000 *** 0.183 0.049 0.000 *** 
Occupation|Private 
Employee 0.523 

0.159 0.001 *** 
0.472 

0.154 
0.002 

** 

Occupation|Self-employed -0.341 0.166 0.04 * -0.328 0.157 0.037 * 
Occupation|Student     0.478 0.208 0.022 * 
Occupation|Retired -0.779 0.233 0.001 *** -1.148 0.219 0.000 *** 
Occupation|Unemployed -0.395 0.211 0.061 . -0.941 0.202 0.000 *** 

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’  

Findings revealed that the utility of public transport is significantly affected from the trip attributes, namely 
travel cost, travel time and the level of comfort. As expected, when travel time and travel cost are 
increasing, travellers tend to use their private vehicle instead of public transport. On the other hand, higher 
levels of comfort attract more travellers to public transport services.  

As far as users’ characteristics are concerned, findings indicated that the younger travellers are more likely 
to use public transport than the elderly. Interestingly, private employees are also more likely to use public 
transport for their everyday trips, when compared to travellers with other occupations.  Moreover, as it is 
expected, travellers who usually travel by car are less likely to use public transport for their trips. 

Finally, it appears that travellers are more likely to use public transport when travelling for other purposes 
either than work or education. This finding can be seen in relation to how important travellers consider that 
they arrive on time when travelling for work. If so, results indicate that travellers do not consider public 
transport as a reliable travel mode and thus are less likely to use it when travelling for work purposes. The 
use of bicycle as a means of transport significantly depends on the trip purpose. Findings revealed that 
those who travel for work purposes are less likely to use bicycle. Moreover, travellers who usually travel by 
car are less likely to use bicycle for their everyday trips when compared to those who travel by public 
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transport. Furthermore, students and private employees are more likely to use their bicycle than public 
servants. Results also indicated that the elderly is less likely to use a bicycle for everyday trips. 

Finally, in this case as well, if travel cost and travel times of bicycle increase, travellers would prefer to use 
their private vehicle instead of the bicycle. The above described model was also used for prediction over 
the test set. Results of the classification are presented in the classification matrix below (Table 2.7).  

 

Table 2.7 Classification matrix for the three travel mode alternatives (the Netherlands) 

 Response 

Car PT Bike 
Pr

ed
ic

te
d Car 205 62 104 

PT 54 174 80 

Bike 61 63 139 

 

Figure 2.16 Multiclass-ROC plot for the three classes of travel mode (the Netherlands) 

It is observed that due to the limited observations of bicycle, the model cannot predict accurately the third 
class (bicycle), which results in poor prediction capability of our model. The area under the multiclass-ROC 
plot was estimated 0.63. In case where more data are available there is room for further improvement of 
the model. Nevertheless, these results provide a sufficient depiction of the manner in which travellers 
choose between the alternatives that they have for a specific trip and more specifically, highlight the 
importance of the parameters that should be taken into consideration when travel behaviour is being 
analysed.   

2.4.1.2 GREECE 

The model developed for the case of Greece, is quite similar to the one that describes travel choices in the 
Netherlands. The McFadden R2 was estimated 0.14 which indicates that the model adequately captures 
such a complex phenomenon. Utility functions of both public transport and motorcycle are presented in 
Table 2.8.  
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Table 2.8 Multinomial Logistic Regression model for Greece – Travel Mode choice model 

Variables 
Public Transport  Motorcycle 

Coeff. Std. Error Pr (>|z|)  Coeff. Std. Error Pr (>|z|)  
(Intercept) 0.011    3.475    
Travel Time -0.020 0.003 0.000 *** -0.020 0.003 0.000 *** 
Level of Comfort 0.343 0.091 0.000 *** 0.343 0.091 0.000 *** 
Trip purpose -0.514 0.129 0.000 *** -0.244 0.129 0.058 . 
Age 0.113 0.052 0.030 * -0.247 0.052 0.000 *** 
Gender 0.236 0.111 0.012 * -0.697 0.115 0.000 *** 
Numb. of trips by car -0.355 0.059 0.000 *** -0.690 0.061 0.000 *** 
Numb. of trips by PT 0.191 0.069 0.018 * -0.660 0.067 0.000 *** 
Occupation|Public Servant 0.582 0.164 0.000 ***     
Occupation|Self-employed     -0.493 0.156 0.002 ** 
Occupation|Student         
Occupation|Retired 1.740 0.366 0.000 ***     
Occupation|Unemployed     -1.235 0.542 0.023 * 

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’  

In the case of Greek travellers, interestingly, findings revealed that travel cost does not affect travel mode 
choice decisions. This finding may indicate that the importance of habit when choosing how to travel or the 
fact that other service-related attributes are more important when choosing between alternative travel 
modes. Nevertheless, the utility of public transport is significantly affected from the rest trip attributes, 
namely travel time and the level of comfort. As expected, when travel time is increasing, travellers tend to 
use their private vehicle instead of public transport. On the other hand, higher levels of comfort attract 
more travellers to public transport services.  

Compared to results from the Netherlands, travellers’ age does not seem to affect travel mode decisions. 
On the other hand, findings indicated that women are more likely to use public transport than men. 
Interestingly, public servants and retired people are also more likely to use public transport for their 
everyday trips, when compared to travellers with other occupations. Moreover, as it is expected, travellers 
who usually travel by car are less likely to use public transport for their everyday trips. 

Finally, it appears that travellers are more likely to use public transport when travelling for other purposes 
either than work or education. This finding can be seen in relation to how important travellers consider that 
they arrive on time when travelling for work. If so, results indicate that travellers do not consider public 
transport as a reliable travel mode and thus are less likely to use it when travelling for work purposes.  

The use of motorcycle as a means of transport in Greece, significantly depends on gender. Findings 
revealed that women do not tend to use motorcycle for their everyday trips. Moreover, those who travel 
for work purposes are less likely to use motorcycle. Moreover, travellers who usually travel by car are less 
likely to use motorcycle for their everyday trips. Furthermore, self-employed and unemployed are more 
likely to use their private car for their everyday trips rather than motorcycle. As one may have expected, 
results also indicated that the elderly is less likely to use a motorcycle for everyday trips. Finally, in this case 
as well, if travel time of motorcycle increases, travellers would prefer to use their private vehicle instead. 

The above described model was also used for prediction over the test set. Results of the classification are 
presented in the classification matrix below (Table 2.9).  
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Table 2.9 Classification matrix for the three travel mode alternatives (Greece) 

 Response 

Car PT Moto 

Pr
ed

ic
te

d Car 108 35 38 

PT 42 99 33 

Moto 56 36 137 

 

Figure 2.17 Multiclass-ROC plot for the three classes of travel mode (Greece) 

Based on the classification matrix, the prediction capability of our model can be considered as adequate 
with the precision of each class being almost 60%. The area under the multiclass-ROC plot was estimated 
0.67. As mentioned before, in case where more data are available there is room for further improvement of 
the model. Nevertheless, these results provide a sufficient depiction of the manner in which travellers 
choose between the alternatives that they have for a specific trip and more specifically, highlight the 
importance of the parameters that should be taken into consideration when travel behaviour is being 
analysed.   

2.4.1.3 PORTUGAL 

This section presents the MNL model describing the importance of parameters in the decision-making 
process of travelling for people using Portuguese transportation network. The McFadden R2 was estimated 
0.32, which indicates a well fitted model to the data, since human behaviour is attempted to be modelled 
here. The results of the utility function of public transport and motorcycle are summarized in Table 2.10. 
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Table 2.10 Multinomial Logistic Regression model for Portugal – Travel Mode choice model 

Variables 
Public Transport  Motorycle 

Coeff. Std. Error Pr (>|z|)  Coeff. Std. Error Pr (>|z|)  
(Intercept) -0.592    2.307    
Travel Time -0.020 0.004 0.000 *** -0.020 0.004 0.000 *** 
Travel Cost -0.202 0.032 0.000 *** -0.202 0.032 0.000 *** 
Age     -0.212 0.050 0.000 *** 
Numb. of trips by car -1.050 0.074 0.000 *** -1.244 0.067 0.000 *** 
Numb. of trips by PT 1.184 0.061 0.000 ***     
Occupation|Public 
Servant  

   
0.492 

0.156 0.002 ** 

Occupation|Self-
employed -0.790 

0.238 0.001 ** 
0.374 

0.174 0.032 * 

Occupation|Student         
Occupation|Retired     0.597 0.258 0.021 * 
Occupation|Unemployed         

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’  

Based on the results, as expected, in this case as well when travel cost and travel time increase travellers 
are less likely to travel by public transport. In Portugal, findings revealed that self-employed are more likely 
to choose their private vehicle for everyday trips rather than public transport. Finally, the number of trips 
performed by each mode per week is a significant indicator of whether the traveller will use public 
transport. In contrast to the results of the other countries, in the case of Portugal the level of comfort does 
not appear to be a significant parameter when choosing between car and public transport. 

As far as it concerns the utility function of motorcycle, increases when travel time and travel cost of the trip 
are reduced. Findings revealed that younger people are more likely to choose motorcycle for their everyday 
trips when compared to the elderly. Interestingly, retired people are also more likely to use motorcycle for 
their daily transport. Finally, frequent users of private vehicle are less likely to choose to travel by 
motorcycle. 

The predictive capability of the model was evaluated through well-known measures emerged from the 
classification matrix below (Table 2.11).  

Table 2.11 Classification matrix for the three travel mode alternatives (Portugal) 

 Response 

Car PT Moto 

Pr
ed

ic
te

d Car 162 20 49 

PT 33 181 58 

Moto 31 19 110 
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Figure 2.18 Multiclass-ROC plot for the three classes of travel mode 

2.4.2 TIME OF DEPARTURE CHOICE 

Time of departure choice models are well studied in the literature since choosing time of departure is 
another critical decision of everyday travel. Motivating people to change their departure time could play a 
key role in reducing peak- hour congestion, which remains a critical transportation problem in large urban 
areas. To achieve this behavioural change, it is necessary to better understand the factors that influence 
departure time choice. So far, departure time choice modelling focuses on objective factors, such as travel 
time and travel costs as main behavioural determinants. Most of the studies focus on the work trip, since 
commuters’ departure time is highly connected with limitations on their arrival time [31]. More specifically, 
travellers who travel for work purposes may have work time flexibility constraints and therefore choose 
their departure time differently [32]. Several studies have shown that travellers are more likely to change 
their departure time in order to avoid congestion rather than to change their travel mode [21].  

The My-TRAC application will activate the time of departure choice model only in case where the trip will be 
performed by public transport. This relies on the assumption that travelling by a private vehicle offers an 
increased flexibility regarding not only departure time but also route choice and congestion avoidance. On 
the contrary, when travelling by public transport, the traveller should adjust their choices with respect to 
each mode’s itineraries and trajectory. The choice set of departure time consists of three alternatives: 
Depart on time, depart earlier or depart later (Figure 2.19). Each of the alternatives corresponds to a 
different arrival time. The alternative “depart on time” refers to the situation where the traveller will depart 
at that time when the sum of the estimated travel time of the trip will give exactly the desired time of 
arrival at the destination. Departing earlier results in arriving earlier or right on time, while departing later 
result in arriving later.  
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Figure 2.19 Time of departure choice model – Set of alternatives 

Although intuitively the alternative “depart later” seems invalid, there are travellers who prefer to depart 
10 minutes later and thus arrive some minutes later than the desired arrival time, if the total travel time of 
the trip is reduced (e.g., leave some minutes later from home in order to avoid peak hours). This 
observation is even more valid in cases where trips purpose is other than work. 

The independent variables which were used are: 
- Total travel time 
- Walking time 
- Frequency of travel mode 
- Importance of arriving on time when travelling for work (0:Not important at all – 2:Very 

important) 
- Trip purpose (1:Work/0:Other)  
- Gender (0:Male/1:Female) 
- Household Size 
- Age (1-6) 
- Number of trips by PT per week (0:Never – 3:Daily) 

For the development of the time of departure choice model, the alternative “departing earlier” was 
considered as the base alternative. Several model formulations were tested and evaluated in terms of 
model fit and prediction accuracy. 

2.4.2.1 THE NETHERLANDS 

In case the user chooses to travel by public transport, the time of departure choice model is activated. In 
the case of the Netherlands, the parameters that appear to significantly affect whether the person would 
leave earlier, later or on time, are presented in Table 2.12. The model presented here is the best fitted model 
on the given dataset although none of the model formulations which were tested had a McFadden R2 

greater than o.1. Nevertheless, based on the results of the Log-likelihood ratio test the null hypothesis 
𝐻𝐻𝐻𝐻: 𝛽𝛽 = 0, is strongly rejected. 
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Table 2.12 Multinomial Logistic Regression model for the Netherlands - Time of departure choice model 

Variables 
Depart on time  Depart Later  

Coeff. Std. Error Pr (>|z|)  Coeff. Std. Error Pr (>|z|)  
(Intercept) 0.685    0.560    
Total travel time -0.033 0.003 0.000 *** -0.033 0.003 0.000 *** 
Walking time -0.042 0.005 0.000 *** -0.042 0.005 0.000 *** 
Fare discount 2.753 0.136 0.000 *** 2.753 0.136 0.000 *** 
Frequency -0.070 0.018 0.000 *** -0.070 0.018 0.000 *** 
Importance of arriving on 
time|Work -0.104 0.066 0.114  -0.329 0.068 0.000 *** 

Gender -0.439 0.075 0.000 *** -0.231 0.080 0.004 ** 
Trip purpose     -0.239 0.099 0.016 * 

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’   
 
Findings indicate that those travellers who consider important arriving on time when travelling for work 
purposes are more likely to depart earlier. Moreover, it appears that men are more likely to depart on time 
when compared to women who are more likely to depart earlier. Finally, as expected, travellers will choose 
to depart on time rather than earlier if there is a fare discount.  
These findings are in line with the literature since many researchers have highlighted the importance of 
work time flexibility and not arriving on time penalties in the decision making process of time of departure 
choice [33]. 
 
The above described model was also used for prediction over the test set. Results of the classification of 
departure time are presented in the classification matrix below (  
Table 2.13). The area under the multiclass-ROC plot was estimated 0.68 and the multi-class roc plot is 
depicted in Figure 2.20.  

Table 2.13 Classification matrix for the three time of departure alternatives (the Netherlands) 

  
Response 

  

Earlier On-time Later 

Pr
ed

ic
t Earlier 215 155 70 

On-time 79 154 79 
Later 63 110 229 

 

 

Figure 2.20 Multiclass-ROC plot for the three classes of time of departure 



Deliverable 2.3: Modelling framework 
for analysing users’ choices Page 38 of 121  

 

2.4.2.2 GREECE 

In the case of Greece, some additional parameters appear to be significant for choosing between different 
time of departure alternatives. The corresponding results are thoroughly presented in Table 2.14 and a brief 
discussion on the main findings is provided below. 

Table 2.14 Multinomial Logistic Regression model for Greece - Time of departure choice model 

Variables 
Depart on time  Depart Later  

Coeff. Std. Error Pr (>|z|)  Coeff. Std. Error Pr (>|z|)  
(Intercept) 1.191    0.915    
Total travel time -0.033 0.003 0.000 *** -0.033 0.003 0.000 *** 
Walking time -0.042 0.005 0.000 *** -0.042 0.005 0.000 *** 
Frequency -0.062 0.018 0.013 * -0.062 0.018 0.013 * 
Importance of arriving 
on time|Work -0.327 0.113 0.004 ** -1.071 0.106 0.000 *** 

Gender     -0.228 0.117 0.051 . 
Age     0.130 0.042 0.002 ** 
Income     0.255 0.106 0.016 * 
Household size     0.185 0.044 0.000 *** 
Numb. of trips by PT -0.153 0.054 0.005 ** -0.243 0.057 0.000 *** 

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’  
 

Findings indicate that those travellers who consider important arriving on time when travelling for work 
purposes are more likely to depart earlier. This result introduces the parameter of anxiousness which is 
causes during daily commuting and may be related to the perception of the travellers regarding the level of 
reliability and flexibility of the transportation system they use. Moreover, it appears that increased travel 
time and walking time are considered as inhibitor factors for choosing to depart on time. Finally, results 
show that frequent public transport users are more likely to depart earlier rather than on time.  

Remarkably, women are more likely to depart earlier rather than later, as opposed to men which is an 
interesting finding revealed also from the case of the Netherlands. Finally, findings revealed that travellers 
who have a high income choose to depart later than those with have low income.  

The above described model was also used for prediction over the test set. Results of the classification of 
departure time are presented in the classification matrix below (Table 2.15). The area under the multiclass-
ROC plot was estimated 0.63 and the multi-class roc plot is depicted in Figure 2.21. 

Table 2.15 Classification matrix for the three time of departure alternatives (Greece) 

  
Response 

  
Earlier On-time Later 

Pr
ed

ic
te

d Earlier 81 46 43 
On-time 74 83 32 

Later 43 47 118 
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Figure 2.21 Multiclass-ROC plot for the three classes of time of departure (Greece) 

2.4.2.3 PORTUGAL 

The utility function of time of departure alternatives seem to be very similar with those emerged from the 
Dutch sample. The importance of the parameters that are included in the utility functions as well as the 
coefficient estimates are presented in the table below (Table 2.16). 

Table 2.16 Multinomial Logistic Regression model for Portugal - Time of departure choice model 

Variables 
Depart on time  Depart Later  

Coeff. Std. Error Pr (>|z|)  Coeff. Std. Error Pr (>|z|)  
(Intercept) 0.834    2.627    
Total travel time -0.033 0.005 0.000 *** -0.033 0.005 0.000 *** 
Walking time -0.018 0.005 0.000 *** -0.018 0.005 0.000 *** 
Frequency -0.085 0.045 0.058 . -0.085 0.045 0.058 . 
Importance of arriving 
on time|Work -0.473 0.094 0.000 *** -1.602 0.097 0.000 *** 

Gender -0.235 0.104 0.023 * -0.692 0.114 0.000 *** 
Trip purpose 0.316 0.137 0.021 * 0.449 0.144 0.002 ** 

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’  
 

In line with the results of the other countries, findings indicate that those travellers who consider important 
arriving on time when travelling for work purposes are more likely to depart earlier. Moreover, it appears 
that men are more likely to depart on time when compared to women who are more likely to depart earlier. 
Finally, as expected, in order to avoid increased travel and walking times, travellers would choose to depart 
earlier.  

Interestingly, gender is even more significant when the alternative of departing later is being evaluated. 
More specifically, findings indicate that women are more likely to depart earlier rather than later on 
contrary to men. 

The above described model was also used for prediction over the test set. Results of the classification of 
departure time are presented in the classification matrix below in (Table 2.17). The area under the 
multiclass-ROC plot was estimated 0.63 and the multi-class roc plot is depicted in Figure 2.22. The model 
does not perform well when it comes to the alternative of “departing on time”, although the recall of the 
two other classes is estimated approximately 60%. 
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Table 2.17 Classification matrix for the three time of departure alternatives (Portugal) 

  
Response 

  

Earlier On-time Later 

Pr
ed

ic
te

d Earlier 111 46 43 
On-time 34 83 32 

Later 48 47 118 

 

 

Figure 2.22 Multiclass-ROC plot for the three classes of time of departure (Portugal) 

2.5 SUMMARY 

This section presented the development and results of the analysis of two choice dimensions, mode and 
departure time choice. The data for the analysis was collected through stated preference experiments 
conducted in three locations, namely, the Netherlands, Greece, and Portugal. As discussed in the 
introduction, multinomial logit models were used for the analysis itself. Finally, the main alternative 
attributes and personal characteristics affecting choice behaviour were highlighted and the differences 
across the three survey locations were discussed. 
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3 ROUTE CHOICE 
In this chapter, we model travel behaviour associated with route choice. Given the close association of My-
TRAC with Shift2Rail, and the general focus on public transport, route choice models are explicitly modelled 
for public transport networks. Similar to the choice models developed in the previous section, as well as in 
D2.1, special attention is paid to travellers’ attitudes towards and perceptions of risk under uncertainty. 
Such attitudes and perceptions cause unexpected deviations from rational behaviour. Thus, it is important 
to not only describe how people will behave but also to work towards prescriptive action that will help us 
give people meaningful travel advice. Furthermore, we study how behaviour may be assessed from 
observations of actual trips.  

Conventionally, travel behaviour and consumer satisfaction are studied by distributing survey to riders 
inside public transport stations and vehicles. However, as more and more data becomes available to 
researchers and transportation authorities, through the My-TRAC application and other sources, revealed 
preferences will be the main source for behaviour analyses and consumer studies. To this end, we also 
focus on studying revealed preferences from the pre-dominant source of such data today: smart card data. 
We understand that respecting consumer privacy is an important aspect today and therefore it has been an 
important vision for the My-TRAC consortium. To this end, the data we use has been fully scrambled from 
the origin – we are unable to link smart cards to individual nor are we able to link journeys to smart cards. 
All journeys are assessed on their own merit without linking them together by a single identity. 

The structure of this section is different from that of the previous one, since we undertake different lines of 
research. First, we focus on capturing waiting time uncertainty that travellers in public transport networks 
feel (Model 1: section 3.1). This is done through conventional stated preference experiments, albeit with a 
novel choice situation that permits the quantification of subjective beliefs regarding uncertainty as well as 
the effect of context and personal characteristics on this uncertainty. Results from the Netherlands, 
Greece, and Portugal are presented. In the next two sections, we present analyses of smart card data and 
revealed behaviour. Unfortunately, such data could not be secured from Greece and Portugal; therefore, 
we focus on the Netherlands. We first study an extremely important aspect of choice analysis: choice sets 
(Model 2: section 3.2). Analysing the alternatives considered by decision-makers when choosing is critical to 
both accurate behaviour modelling as well as presenting application users with appropriate options. If we 
do not model this aspect of choice behaviour, we are likely to miss an option that a traveller would have 
taken, or we might present the traveller with an option that they would never take. Once a decision-maker 
has their choice set, they are likely to move on to a fully compensatory choice that trades off different 
attributes of all the alternatives included in the choice set. Thus, we finally use the same smart card dataset 
to estimate a fully compensatory route choice model (Model 3: section 3.3). 
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3.1 MODEL 1: CAPTURING WAITING TIME UNCERTAINTY3 

Given the large number of sources of stochasticity, transportation networks are associated with inherent 
uncertainty. Understanding route choice behaviour under such uncertainty leads to improved 
understanding of network flows and traveller satisfaction. On the supply side, this is important for 
transportation authorities to plan service levels and prioritise relevant investments. On the other hand, 
knowing how travellers make choices gives authorities an opportunity to be more proactive and influence 
demand in a way that is optimal for the system as a whole. To this end, this section proposes a method to 
quantify the level of uncertainty perceived by travellers in public transport networks. 

In decision theory, the Knightian classification of uncertainty is based on whether, for a set of (possibly 
infinite) events, objective probabilities exist or not. Decisions under the former regime (when probabilities 
exist) are said to be made under ‘risk’ while those under the latter are under ‘ambiguity’ or ‘uncertainty’ 
[35]. The assumptions that objective probabilities are available and trusted by decision makers are seldom 
fulfilled in the real world. Most real world events indeed occur under ambiguity wherein decisions are made 
based on subjective beliefs [35, 36]. 

In most road or public transport networks too, not only do travellers not have access to objective travel 
time probability distributions but any information provided regarding travel time or its reliability will be 
distorted by travellers’ beliefs borne from a number of factors such as previous experiences, habits, and 
contexts. Despite this, in most studies on the effect of reliability on route choice behaviour, choices 
observed have been made and/or analysed using objective probabilities. Studies on the impact of travel 
time reliability have used observations from one of the following sources: stated preference experiments, 
actual trips, or laboratory experiments. Stated preference experiments, which are by far the most 
commonly employed methodology, typically present respondents with route alternatives with risky travel 
time attributes. Apart from the departure from the uncertainty paradigm in the real world, such 
experiments face difficulties in conveying probabilities (see Bates, et al. [37], Carrion and Levinson [38]) and 
usually do not take into account subjective weighting [39] of the presented probabilities or apply out-of-
context parameters to do so (e.g., Li and Hensher [40]). Studies using revealed preferences from real-world 
observations have been limited, and mainly focused on car traffic networks, because of the lack of suitable 
data and control over the choice situation. In these studies, although decisions are made under ambiguity, 
analysis is, nevertheless, carried out using objective probabilities [38]. Laboratory experiments, which offer 
more control over the choice situation, typically focus on analysing learning mechanisms (e.g., Avineri and 
Prashker [41]) and comparing the effects of different levels and accuracies of information (e.g., Ben-Elia, et 
al. [42], Ben-Elia, et al. [43]). These studies assume a fixed learning period and for situations where 
information is provided either (implicitly) assume a risky paradigm or do not quantify subjects’ travel time 
reliability perceptions. 

This section proposes a method to assess travellers’ route choice behaviour under natural ambiguity 
without using objective probabilities or assuming specific learning behaviour — important drawbacks in 
existing studies. Specifically, a route choice situation is proposed whereby travellers’ beliefs towards 
waiting time uncertainty can be quantified in terms of a certainty equivalent. For a given risky or uncertain 
prospect, its certainty equivalent is that risk-less outcome for which the decision-maker becomes 
indifferent to either prospects. For decisions under ambiguity, the certainty equivalent simultaneously 
represents how probable an outcome is thought to be and ambiguity aversion. In addition, it measures how 
other context variables affect travellers’ perception of uncertainty. The choice situation is contextualised 

                                                                    
3 Parts of this section are based on [34]S. Shelat, O. Cats, and J. W. C. van Lint, "Quantifying Subjective 
Beliefs Regarding Waiting Time Uncertainty in Public Transport Networks," presented at the The 24th 
International Conference of Hong Kong Society for Transportation Studies, Hong Kong, 14-16 December 
2019, 2019.  and an associated working paper under the same name. 
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and used in a stated preferences experiment aimed at capturing how uncertainty in waiting time is 
perceived by public transport travellers in The Netherlands, Greece, and Portugal. 

The next sub-section presents a theoretical framework of behaviour under uncertainty. Section 3.1.2 
presents the proposed choice situation and section 3.1.3 describes the design, presentation, and sample of 
the stated preferences experiment. This is followed by the choice analyses and discussion in section 3.1.4 
and a summary in section 3.1.5. 

3.1.1 THEORETICAL FRAMEWORK 

In order to describe decision-making under uncertainty, we divide the process into three main parts: (i) 
belief evaluation, (ii) decision-making, and (iii) learning (Figure 3.1). Through belief evaluation, subjective 
beliefs regarding uncertain attributes are obtained, which are then used to evaluate and compare 
prospects (alternatives) and make a choice. After making a choice, the resolution of some or all of the 
uncertainty may be observed by the decision-maker, which feeds back to their experiences memory. 
Experiences, habits, and subjective beliefs (personal characteristics and system perception) are connected 
through learning loops.  

We focus on subjective beliefs which are formed from personal characteristics developed over a long 
period of time and system perceptions that are updated more frequently, as well as the effects contexts 
(we focus on situational contexts rather than affective ones) have on them. We assume decisions are made 
under the random utility maximization paradigm. Furthermore, the focus is on capturing snapshots of 
subjective beliefs; therefore, we do not study the feedback and learning mechanism involved in belief 
evaluation. 

 

Personal characteristics + system perceptions = subjective beliefs 

Theoretically, personal characteristics and (subjective) perceptions of risk are distinguished to study which 
of these are the driving forces behind behaviour under uncertainty [44]. Anticipation of regret and 
attitudes towards risk and uncertainty, are amongst the most influential personal characteristics for 
decisions under uncertainty. These personal characteristics are developed over a long period of time and 
are not susceptible to frequent changes. They have been quantified in literature in a number of ways from 
Likert scales to various mathematical formalizations in decision models including expected utility, 
cumulative prospect theory, and regret theory. Unlike attitudes, subjective perceptions are updated 
frequently based on habits and experiences (gaps between expectations and outcomes). A number of 
models (e.g., Bayesian updating, weighted average learning) have been proposed for the learning 
mechanism through which these three aspects — perceptions, habits, and experiences — interact with one 
another.  

Practically, however, it is difficult to disentangle the effects of personal characteristics and perceptions in 
observed behaviour. For instance: does a person buy theft insurance because she feels theft is likely to 
occur or because she is generally risk averse in these matters? In single attribute experiments, outcome 
valuation and subjective probabilities have been successfully disentangled, for instance using the trade-off 
method [36] but it is not obvious how this would be done in multi-attribute decisions such as route choice. 
When using non-expected utility models for decisions under natural ambiguity, only recently have studies 
explicitly measured ambiguity aversion whilst controlling for likelihood beliefs [45]. Indeed some [46] have 
argued that the separation of preferences arising from personal characteristics and beliefs is neither 
possible nor required for decision analysis or economic modelling. Therefore, for this section we consider 
‘subjective beliefs’ which are formed by personal characteristics and perceptions.  

Note here that we use the term ‘beliefs’ slightly differently from how it is commonly used in decision 
theory; there ‘subjective beliefs’ explicitly refers to how likely a decision-maker feels that a particular event 
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will occur. A better term might be ‘subjective belief-values’ but for the sake of conciseness we will use 
subjective beliefs as an all-encompassing term. 

 

Situational contexts 

Contemporary contexts affect how an attribute (e.g., waiting time) is experienced. For waiting time, [47] 
makes a number of propositions that define which contexts make waiting seem longer or shorter than 
reality; for instance, occupied time feels longer than unoccupied time or that unexplained waits are longer 
than explained ones. [48] reviews these propositions in terms of the degree to which service managers can 
control the related contexts and their impacts on customers. Previous studies have explored the 
differences in value of travel time for different contexts such as free-flow traffic, stop-and-go traffic, and 
on-ramp delays [49, 50]. Ongoing experience is important because it will be taken into account by 
customers when anticipating the value of uncertain attributes in the upcoming future.  

With real-time information becoming available more easily, another way contexts might affect subjective 
beliefs is through irrelevant information. For instance, delays in other parts of a transportation network 
might lead one to believe that there will be delays on their route as well. Similarly, subjective beliefs may be 
affected when there are predicted deviations from scheduled services due to a breakdown of trust in the 
system. This might lead to choices that indicate a disproportionately higher degree of pessimism or 
risk/ambiguity aversion.  

As a contextual variable, the amount of waiting time already experienced by the time of decision may have 
two opposite effects of varying magnitude. On the one hand, greater experienced waiting time translates 
to increasing stress and frustration [51], on the other, there may be a sunk-cost effect [52] wherein having 
waited for some time is in itself an impetus to wait some more. In an explicit study on the sunk-cost effect 
for time (rather than money which most authors examine), Soman [53] finds that because people do not 
have the ability to account for time in the way they do for money, the effect is not found. However, he does 
not consider travel time in transportation choices where, often, one time component is traded-off with 
another in the same trip which could make it easier for people to open and keep mental accounts of time. 

 

 

Figure 3.1: Theoretical framework of decision-making under uncertainty. 
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3.1.2 CHOICE SITUATION 

Travellers in public transport networks are likely to select a hyperpath (a set of attractive lines) and then 
apply a strategy (such as board the first line that arrives) [54]. Not only does the importance of making 
sequential decisions increase with uncertainty in the network but the type of strategy employed depends 
on the reliability perception and information available regarding the network [54, 55]. To understand 
traveller behaviour under uncertainty, one such sequential choice is analysed — whether to board a 
particular vehicle — in the context of the following situation (Figure 3.2). 

Consider a traveller who arrives at a public transport stop. From here, either of the next two vehicles can 
take her to her destination. Both of these vehicles are identical in every way except for their departure and 
arrival times at the origin and destination stations, respectively. Furthermore, both of these vehicles will 
take her directly, without any transfers, to the destination station. As is prevalent in many mass transit 
systems worldwide, the scheduled departure times from the origin stop as well as any anticipated delays 
(real-time information) are shown to the traveller. Moreover, she is assumed to know the time both 
vehicles will take to reach her destination station (either from experience or a travel planner). When the 
first vehicle (VEH1) arrives, she must make a decision, based on the information available to her and her 
beliefs regarding the network, whether to board it or to wait for the next one (VEH2). 

Although the vehicles are identical, the options available to the traveller (unlike route alternatives in most 
choice situations) are not unlabelled — in fact, the traveller is comparing a certain (as in risk-less) option 
against an ambiguous one. The vehicle that has already arrived has a certain waiting time which is almost 
zero due to the, usually, negligible difference between doors closing and departure. Although the 
anticipated waiting time for the next vehicle is displayed, it is ambiguous for the traveller since no concrete 
probabilities regarding its accuracy are supplied. Rather, she will draw from her own subjective perceptions 
of this natural source of ambiguity and make a decision.  
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Figure 3.2: Choice situation presented in a timeline format 

 

Thus, from this situation the certainty equivalent of ambiguous waiting time can be calculated. This is 
because, in addition to observing the trade-off between the difference in in-vehicle times and the 
anticipated waiting time, we also observe the value assigned to the certain option which represents the 
traveller’s subjective beliefs regarding the anticipated waiting time. The traveller’s subjective beliefs, and 
therefore her value of certainty, may also be affected by delays in the system and the time she already 
spent waiting before the decision point. Equation (3.1) (in section 3.1.4) describes the utilities of the two 
options. Since travellers are not likely to believe that the actual waiting time will be significantly lower than 
the displayed prediction, it is reasonable to expect that they do not dislike certainty. This implies that if 
travellers, in general, believe the shown anticipated waiting time, the value of certainty would be lower 
than if there is a general perception of poor reliability. 

To assess the value of certainty in waiting time, choices between non-(strictly)-dominated alternatives must 
be observed. Assuming that travellers either like or are indifferent to certainty in waiting time, to ensure 
that the certain alternative does not dominate the uncertain one, the former must arrive at the destination 
later than the latter taking into account any weighting of travel time components. The uncertain vehicle can 
arrive at the destination before the certain one if it can either overtake the latter along a common path or if 
they serve two distinct lines. 
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3.1.3 RESEARCH APPROACH: STATED PREFERENCES EXPERIMENT 

In order to capture the subjective beliefs regarding uncertainty of public transport travellers in The 
Netherlands, Greece, and Portugal we use a stated preferences experiments with the above described 
choice situation. When the proposed choice situation is presented as a stated preference questionnaire, it 
has two important advantages over conventional travel time reliability behaviour stated preference 
experiments. First, since there are no objective probabilities, they do not have to be conveyed to 
respondents so that everyone can understand them; thus, circumventing a major issue in such experiments. 
Second, unlike conventional choice experiments where respondents are known to provide protest answers 
in such experiments to demonstrate (in an exaggerated manner) their dislike towards delays and 
irregularities in public transport services [37], it is less obvious to survey-takers what is being measured and 
therefore they are likely to indicate their ‘true’ preferences. Next, we discuss the experiment design and 
the data collection. 

3.1.3.1 EXPERIMENT DESIGN 

The choice situation consists of the following variables: (i) time already waited or the experienced waiting 
time; (ii) the anticipated delays of the two trains; (iii) the in-vehicle times of the two trains; and (iv) the 
anticipated waiting time for the second train. The first variable, experienced waiting time, is a context 
variable as it holds true irrespective of the alternative chosen. Since, the objective is to understand how 
they affect the value of certainty, the anticipated delays for the two trains are changed together. Otherwise 
the effect of the delay itself and its effect on the perception-value of certainty would be indistinguishable. 
Thus, the anticipated delay in the two trains can also be considered to be a context variable. 

The selection of attribute values for in-vehicle times and anticipated waiting times is a little tricky. The 
values of in-vehicle times and anticipated waiting times must be such that, given the expectations of 
traveller preferences, alternatives presented must not be dominated for a range of trade-off ratios 
between anticipated waiting time and in-vehicle time. Commonly, studies have found that waiting time is 
weighed 1.5-2 times compared to in-vehicle time . However, it is also possible that travellers are directly 
comparing expected arrival times at the destination, in which case the waiting time and in-vehicle time are 
weighted equally. Thus, the range of waiting time – in-vehicle time trade-offs considered here is from 1 
(arrival time differences) to 2 (higher end amongst most findings). A trial-and-error approach is used to find 
which attribute values satisfy a set of objectives and constraints. 

For all three variables — in-vehicle times for the two trains and anticipated waiting time for the second train 
— only two attribute values are chosen. This results in 8 (2×2×2) possible utility differences for a given 
waiting value. The objectives set are such that for the extreme values in the selected range of waiting to in-
vehicle time coefficient ratios (i.e., 1 & 2) and considering the alternatives to be unlabelled (i.e., without an 
alternate specific constant), amongst the 8 possible utility differences, there are at least: (i) 4 that are in 
favour of the second train, (ii) 1 that is neutral, and (iii) 1 that is in favour of the first train. The objectives are 
tilted in favour of the second train because people are expected to be neutral at the least but in general 
have a preference for certainty and therefore the utility of a certain, zero waiting time is expected to be 
positive. The latter two objectives are set to prevent respondents from learning that the first train always 
arrives second at the destination as well as to allow observations to indicate that our expectation regarding 
the sign of utility of certainty is incorrect. In addition to these objectives, the following constraints are set 
on the attribute values: (i) the minimum anticipated waiting time is 4 minutes, (ii) the minimum in-vehicle 
time is 4 minutes, and (iii) the range of all attributes is at least 4 minutes. The first two constraints ensure 
realism of attribute values. The attribute value range constraint is set because the larger the difference in 
utilities of the alternatives offered, the lower the number of observations required to obtain estimable 
parameters. Note that only even values were used in order to reduce the search space. Table 1 shows the 
attribute values used in the experiment. 
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Table 3.1: Attribute values used in the choice experiment 

Attribute Attribute values (in minutes) 

Experienced waiting time 0, 5, 10, 15 

Anticipated delays in both trains 0, 5, 10, 15 

In-vehicle time for the first train 14, 28 

In-vehicle time for the second train 4, 8 

Anticipated waiting time for the second train 4, 10 

 

With these attributes and values, a simultaneous orthogonal fractional factorial design is found with 
NGENE. To limit the number of questions per respondent, the design is blocked into two parts. With this 
specification, a design with a total of 16 choice situations is found with 8 choice situations per respondent. 

3.1.3.2 PRESENTATION 

The choice experiment section begins with an explanation of the choice situation. Next, the respondent 
faces a sample question which is not used in the analysis and finally the 8 choice situations that will be used 
for the analysis. Each choice situation is prefaced by the instruction that there were two trains that could 
take them to their destination from the platform.  

Respondents are shown information regarding the waiting times and anticipated delays of the two trains 
(TRN1, TRN2) in a format similar to what they are familiar with. In the Netherlands, this is a signboard found 
at platforms of the Dutch railways (Figure 3.3) and in the other countries it is a countdown clock displayed 
in minutes and seconds. Respondents are informed that the information regarding waiting times and delays 
are as per the state of the signboards at the decision point (as described in section 3.1.2). To remind survey-
takers in the Netherlands of the information shown in different parts of the signboard, an annotated 
version is also displayed in the example question. Separately from this, information regarding the in-vehicle 
times and the time already waited is shown as a table and a line of text, respectively. Finally, the 
respondents are asked to choose whether they would board TRN1 or wait for TRN2 (see Figure 3.4, Figure 
3.5). In the online survey in the Netherlands, the order of the 8 situations as well as that of the two options 
in each situation were scrambled to avoid any biases. 

 

 

Figure 3.3: Information displays at a real station (annotated) 

 

Current Time Scheduled departure TRN1 Anticipated delay TRN1

Scheduled departure TRN2 Anticipated delay TRN2
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Figure 3.4: Screenshot of a question in the choice experiment for the Netherlands (translated to English) 

 

Figure 3.5: Screenshot of a question in the choice experiment for Greece and Portugal (translated to 
English) 

It is likely that respondents subjective beliefs about the system is affected by the time-of-day. Therefore, 
when not explicitly testing how this belief changes across different time periods in a day, it would be ideal 
to try not to induce bias by not presenting any clock times. However, since the Dutch railways is a schedule-
based system, train arrivals are associated with a particular clock time and travellers are used to seeing this 
information on the signboards. Therefore, the planned departure time of the first train is fixed at around 
10:30. This time is somewhat neutral in the sense that it is just outside the morning peak (06:00-09:00) and 
not too far into the midday off-peak hours. Moreover, respondents may still be able to imagine using this 
train for different purposes. 

It should be noted that regardless of whether they choose to board the arrived train or wait for the next, 
travellers are not given any feedback on the outcomes, thus avoiding any learning effects and forcing 
respondents to continue to depend on beliefs formed in the real-world. 

There are two identical trains (TRN1 and TRN2) that can 
take you to your destination

TRN1 has arrived.

You have waited 15 minutes 
at the platform

Travel time

Choose what you do:

Board TRN1
Wait for TRN2
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3.1.3.3 DATA COLLECTION 

The choice experiment was included within a larger survey that consisted of four parts, in this order: (0) 
screening, (1) socio-demographics, (2) choice experiment, and (3) qualitative measurements (see Appendix 
C). The structure, content, and design of an initial draft of the survey was refined based on comments 
received from a small pilot of about 20 persons. The final version of the survey was offered in the respective 
local languages and had an expected completion time of 10 minutes.   

The same data collection methods are used as for the mode and departure time choice experiments (see 
section 2.3). In the Netherlands, it was distributed to a predefined sample size of 700 respondents through 
an online panel, PanelClix. Given that most people in the Netherlands have access to the internet, this 
method of data collection does not create any obvious biases. The data collection took place in November-
December  2018. For Greece and Portugal, the predefined sample size was 300-350 respondents. In Greece, 
the data was collected offline in February-March 2019 by surveying respondents on university campus 
(National Technical University of Athens), public transport stations and other important areas in Athens. In 
Portugal, a combination of online and offline methods is used and data was collected during March-April 
2019. 

 

Screening and socio-demographics 

For the Netherlands, respondents were screened out if they used the trains less than once per month on 
the basis that if respondents do not meet this criterion, they are likely to not have well-formed subjective 
beliefs regarding the railways. Regarding trip purpose, in the Netherlands, the survey aimed to collect 
about 80% of responses from those who used the railways for commuting either to work or education, and 
the rest from those with other purposes. The greater focus on commuters and efforts was to ensure that 
those travelling more frequently are included is due to the fact this group is more likely to have more well-
formed value systems and subjective beliefs. Furthermore, for the Netherlands, desired socio-demographic 
quotas were obtained from the data collected between 2011 to 2015 by a national, one-day, trip diary 
survey, OViN (Onderzoek Verplaatsingen in Nederland) conducted by the Dutch Central Bureau of Statistics 
(2011–2015, Centraal Bureau voor de Statistiek [56]. The distribution of age, gender, and household incomes 
of respondents in that  survey who use the railways at least once (during the day of reporting) are used as 
the desired stratification. It should be noted that these distributions were not weighted by the individual 
weights given in the survey as the group was reasonably large in itself. For the other countries, the trip 
purpose criterion was somewhat relaxed to make data collection easier. Moreover required socio-
demographics for these countries only focused on age and gender. Table 3.2 shows the distribution of 
respondent characteristics and completion times for the final set of valid responses. 
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Table 3.2: Sample characteristics 

Country  The Netherlands Greece Portugal 

Total respondents  
(observations per respondent) 

 703 (8) 382 (8) 312 (16) 

Attribute Value    

Gender 
Female 54.8% 52.9% 51.9% 

Male 45.2% 47.1% 48.1% 

Age 

<18 0.1% 0.0% 7.7% 

18-24 32.7% 22.0% 21.8% 

25-34 24.0% 23.3% 11.2% 

35-44 15.4% 20.4% 23.1% 

45-54 13.2% 20.2% 22.4% 

55-64 10.8% 8.4% 7.7% 

>64 3.7% 5.8% 6.1% 

Trip Purpose: Commuting 
Work 53.3% 41.4% 35.6% 

Education 27.9% 16.5% 8.3% 

Trip Purpose: Others 

Errands 0.7% 13.4% 10.9% 

Recreation 18.1% 28.8% 23.1% 

Others 0.0% 0.0% 22.1% 

Trips per Week 

0 1.8% 10.5% 27.6% 

1 13.2% 17.8% 14.1% 

2 18.8% 13.4% 5.4% 

3 18.9% 14.6% 4.5% 

4 22.0% 6.8% 6.1% 

5 22.0% 25.1% 36.2% 

6 2.4% 4.5% 3.2% 

7 0.7% 7.3% 2.9% 
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Qualitative measurements 

The following factors are measured qualitatively on a Likert scale: (i) regret anticipation, (ii) perception of 
reliability, and (iii) engagement level while waiting. The first, anticipation of regret, is considered to be one 
of the main psychological driving forces of risk aversion which leads to a preference for certainty. A 
standardized regret scale consisting of five items adopted from Schwartz, et al. [57] is used to measure it. 
This contains statements such as ‘Whenever I make a choice, I try to get information about how the other 
alternatives turned out’ to which respondents indicate their level of agreement. The second factor assesses 
the perception of reliability of the network in general and in the presence of delays, and the perceived 
accuracy of displayed real-time information. This is tested using questions such as ‘How reliable do you feel 
is the train arrival information?’ or ‘When you at an NS platform, to what extent is your perception of 
reliability (for your trip) affected if the next two consecutive trains that you can take to your destination are 
delayed?’. Finally, as discussed in section 3.1.1, context can affect how waiting time is experienced. Occupied 
time has been consistently shown to reduce perceived waiting time [48] which could in turn affect beliefs 
regarding anticipated waiting time; therefore, the level of engagement of respondents at train platforms is 
measured through the following question: ‘Usually, how engaged are you with the activity you perform 
while waiting at a railway platform?’’  

3.1.4 RESULTS & DISCUSSION 

Discrete choice models are used to analyse the choices observed in the stated preference experiment 
under the conventional framework of utility maximization. First, we formulate utility equations that 
account for the certainty effect as an alternate specific constant. Then, multinomial logit (MNL) models are 
estimated for all the countries. From this model we are able to evaluate the subjective beliefs regarding 
uncertainty in waiting time, and the effect of context variables and personal characteristics on this. For the 
Netherlands, where we have more responses available, we also analyse heterogeneity in behaviour through 
mixed logit (ML) and latent class choice models (LCCM). While the former accounts for taste variations in 
the value of choice model coefficients, the latter identifies distinct behaviour profiles. The ML model also 
measures the effect of socio-demographics, general travel characteristics, and personal factors on 
travellers’ subjective beliefs. All choice model estimations are carried out using PythonBiogeme [58]. 

Four attributes are involved in the choice situation: two main variables — in-vehicle times (IVT) and 
anticipated waiting time (AWT) — and two contextual variables — experienced waiting time (EWT) and 
anticipated delay (DEL). Considering only the above variables, the utilities of the two alternatives, TRN1 and 
TRN2, would be as specified in equation (3.1). As discussed in section 3.1.2, the alternatives are labelled and 
therefore, the train that arrives at the origin first is assigned an alternative specific constant (βcertainty) that 
represents the value of certainty attached to it.  

 
TRN1 certainty IVT AWT EWT DEL

1 2
TRN2

( )

0

U IVT IVT AWT EWT DEL
U

β β β β β= + ⋅ − + ⋅ + ⋅ + ⋅

=
  (3.1) 

 

Table 3.3 gives an overview of all the attributes included in the analysis. 
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Table 3.3: Overview of attributes included in the choice analyses 

Attributes Symbol Explanation 

Choice situation   

Certainty constant βcertainty - 

In-vehicle time βIVT 

All time attributes are in minutes 
Anticipated waiting time βAWT 

Experienced waiting 
time 

βEWT 

Anticipated delays βDEL 

   

Personal characteristics   

Socio-demographics   

Age βage Ordinal in ascending order: 
<18, 18-24, 25-34, 35-44, 45-54, 55-64, >64 

Gender βfemale Categorical(effect coded): 

male, female 

Net personal income βincome Ordinal in ascending order 

Trip purpose βwork, βeducation, 
βerrand, βleisure 

Categorical (effect coded):  
work, education, errands, leisure 

Train use frequency βfrequency Average number of days train is used in a week 

   

Qualitative measures   

Anticipation of regret βregret Average of the scores on 5 Likert scale items 
(higher value: more anticipation of regret) 

System perception βperception Average of the scores on 2 Likert scale items 
(higher value: system perceived to be more reliable) 

Effect of delays on 
perception 

βdelay-effect Likert scale 
(higher value: perception more strongly negatively affected by 
delays) 

Level of engagement 
while waiting 

βengagement Likert scale 
(higher value: more engaged) 

 

3.1.4.1 MULTINOMIAL LOGIT MODELS FOR THE 3 COUNTRIES 

Similar to section 2.4 here, too, MNL models are implemented for the three countries under study. We 
briefly describe MNL models again for reference before presenting the rest of the analysis. The utility of an 
alternative a, Ua, consists of systematic (Va) and random (ε) components. The systematic component is the 
product of the vector of taste preferences (β) and the vector of alternative attributes (xa). In an MNL 
model, the random component is Gumbel distributed. The probability of choosing alternative i from I 
alternatives is given by the following: 
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First, we estimate pure choice situation MNL models for all countries (MNLCS) and then estimate the MNL 
models that also accounts for personal characteristics (MNLALL). This gives us an indication of the 
improvement in model fit brought about by the variables extraneous to the choice situation. The final 
models are developed by removing insignificant parameters (p>0.2) one-by-one. Table 3.5 shows the final 
models for all three countries. 

The model fit for Portugal is surprisingly good while that for the Netherlands and Greece is good and fair, 
respectively. Unlike the other countries, for the Netherlands, only a few personal characteristics remain 
significant and do not improve the model fit enough to justify their inclusion (based on the log-likelihood 
ratio test and a p-value threshold of 0.05). 

For all the models, the signs of the travel times and certainty preference are in the expected direction. 
Travellers prefer the first train more in general (indicating a preference for certainty), and also prefer it 
more as anticipated waiting time for the second train increases and as the differences in in-vehicle time (in 
favour of the second train) reduces. There are no specific expectations regarding the direction of the effect 
of experienced waiting time and it indeed varies. The effect of delay seems to be in the wrong direction – 
one would expect that as the delays become higher, travellers would lose confidence in the system and 
become more uncertain regarding their waiting time. 

On average, travellers in the Netherlands, Greece, and Portugal are willing to trade-off 9.12, 10.62, and 3.67 
minutes of extra in-vehicle time in order to have certainty in their waiting time. In contrast with literature 
(where uncertainty is not accounted for), the ratio of the weights of waiting and in-vehicle time becomes 
less than 1 in the Netherlands (0.65). In Greece and Portugal this ratio remain pretty high at 1.79 and 1.66, 
respectively, despite accounting for certainty preference. For experienced waiting time, as discussed in 
section 3.1.1, there is no clear intuition regarding the effect direction since travellers might either 
experience frustration or take into account sunk costs. Moreover, some people may begin to engage in an 
activity that distracts them from waiting after some threshold of experienced waiting time. An overall 
negative and positive effect in favour of TRN1 is found for Greece and Portugal respectively. However, the 
effect sizes are comparatively quite small. 

In the Netherlands and Portugal, female travellers seem to slightly prefer the certain option more than their 
male counterparts similar to results obtained by de Palma and Picard [59] for their departure time choice 
model. In Greece, higher income individuals prefer the faster option and have more trust in the displayed 
waiting times. Commuters in Portugal feel substantially less uncertain regarding waiting times than non-
commuters and prefer to wait for the second train. Those going to work are more likely to wait for the 
second train than those going for education. Furthermore, those running an errand prefer to take the first 
train more strongly than those using public transport for recreational trips. In Greece, those going to work 
or running an errand seem to show a higher preference for certainty than for other trips. For leisure trips, 
respondents seem to be especially relaxed, choosing to wait for the second trip. 

Greater anticipation of regret is correlated with a preference for certainty in Greece but, surprisingly, has 
the opposite effect in Portugal. Poorer perception of the system’s reliability also has an effect opposite to 
what is expected in Portugal. The level of engagement, however, has the correct sign for both these 
countries with people who report to be more engaged preferring more often to wait for the second train. 
Additionally, respondents in Portugal whose perception is reportedly negatively affected by delays, 
demonstrate a slightly increased preference for certainty. 
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Table 3.4: Estimation results for multinomial logit models for all countries 

Country The Netherlands Greece Portugal 

Model MNLCS MNLALL MNLCS MNLALL MNLCS MNLALL 

Initial LL -3898.260 -3898.26 -2118.258 -2118.258 -3460.191 -3460.191 

Final LL -3331.959 -3326.147 -1953.429 -1915.274 -2271.605 -2142.276 

Adjusted ρ2  0.145 0.147 0.0756 0.0911 0.342 0.377 

 Value p Value p Value p Value p Value P Value p 

βcertainty 0.947 0.00 1.13 0.00 0.212 0.13 0.808 0.01 – – 0.777 0.00 

βIVT -0.123 0.00 -0.124 0.00 -0.0742 0.00 -0.0761 0.00 -0.1980 0.00 -0.212 0.00 

βAWT 0.080 0.00 0.08 0.00 0.132 0.00 0.136 0.00 0.3333 0.00 0.351 0.00 

βEWT – – – – -0.0108 0.11 -0.0112 0.11 0.0225 0.00 0.0231 0.00 

βDEL – – – – -0.0127 0.06 -0.0131 0.06 -0.0280 0.00 -0.032 0.00 

βage   – –   – –   – – 

βfemale   0.0805 0.01   – –   0.0776 0.04 

βincome   – –   -0.127 0.07   – – 

βfrequency   – –   – –   0.0452 0.05 

βwork   -0.048 –   0.194 –   -0.798 – 

βeducation   0 –   0 –   -0.311 0.00 

βerrand   0.177 0.153   0.211 0.00   0.749 0.00 

βleisure   -0.129 0.116   -0.405 0.00   0.36 0.00 

βregret   -0.0389 0.129   0.0947 0.04   -0.0457 0.11 

βperception   – –   – –   0.0711 0.02 

βengagement   – –   -0.17 0.00   -0.27 0.00 

βdelay-effect   – –   – –   0.0562 0.03 

 

In the next sub-sections, since we have more responses available from the Netherlands, we also analyse 
heterogeneity in behaviour through mixed logit (ML) and latent class choice models (LCCM). 

3.1.4.2 MIXED LOGIT MODELS FOR THE NETHERLANDS 

Next, to analyse the variation in behaviour, the choice situation parameters significant in the MNLL model 
are re-estimated within a mixed logit model (MLCS). The model represents taste heterogeneity as a 
parametric distribution of attribute coefficients. Here, all three parameters are assumed to be normally 
distributed and the mean and standard deviation of the distributions are estimated. The model also 
accounts for panel effects that arise from the fact that the observations from the same person may be 
correlated. The model is estimated using an increasing number of Halton draws until consecutive trials 
produce similar results. Results from the highest draws (1600) are shown in Table 3.5. As expected, this 
model is better than the previous model (p < 0.001). The degree of heterogeneity varies between 
attributes. The highest heterogeneity is for anticipated waiting time where the standard deviation is about 
60% of the mean value. The certainty effect shows the smallest heterogeneity, indicating a somewhat 
universal liking for the certain option. Those attributing lower weights to certainty may have more 
confidence in the system or may be less risk averse to waiting time. 
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To assess the effect of socio-demographics, general travel characteristics, and personal factors on 
travellers’ subjective beliefs (thus, value of certainty), another mixed logit model is estimated with these 
variables added to the utility of TRN1. For the estimation, all factors measured on Likert scales and 
categorical variables such as age and income are assumed to be continuous for the sake of model simplicity. 
Where multiple scales measure the same factor (e.g., regret) the mean of the responses is used. Finally, all 
categorical variables that cannot be interpreted as continuous are effect coded. The final results are arrived 
at by starting with all variables and sequentially removing those that are small and/or highly insignificant 
(although quite insignificant, the standard deviation of the value of certainty remains to ensure that the 
models can be easily compared). The likelihood ratio test indicates that the resulting extension of the MLCS 
model, MLALL, outperforms the original (p < 0.001). Results indicate that younger and female travellers have 
a higher preference for certainty. These results are in line with de Palma and Picard [59] who also find these 
categories to be more risk averse. Furthermore, as expected, respondents who indicated that they were 
more engaged while waiting and those who said that they found the railways and displayed information to 
be highly reliable place a lower value in certainty. It should be noted that the values for the qualitative 
measures (engagement, perception) and the categorical age variable ranged between 1–7. 

3.1.4.3 LATENT CLASS CHOICE MODEL FOR THE NETHERLANDS 

Latent class choice models represent heterogeneity basically through a discrete mixture of choice models. 
In LCCM, individuals are probabilistically allocated to latent classes each of which have their own choice 
models. Depending on the objective, different choice models may be used in each class but in this study, 
the MNL model from utility equations in (3.1) is used as the underlying behaviour model for each class. To 
represent this mathematically, consider individual n who belongs to class s (amongst S classes) with 
probability πns. Then the probability that this individual selects alternative i is the product sum of the class 
membership probabilities and the probability of selecting that alternative for each class (given the vector of 
taste parameters in that class, βs).  
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If we assume intra-individual homogeneity in sensitivities, that is, account for panel effects, we essentially 
say that a particular individual is allocated to each class with the same probability for every choice they 
make. Thus, the likelihood of observing the sequence of choices i:i1,…,iT by individual n over T situations is 
given by the following: 
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Apart from accounting for heterogeneity in tastes, an important advantage with LCCM is that individuals’ 
preferences can be explained by using a class membership model to link membership probabilities with 
individuals’ characteristics. The commonly used, logit function is also used here as the class membership 
model. Furthermore, we use the socio-demographic and qualitative measures collected as the individual 
characteristics influencing class membership. For this vector of individual characteristics, zn, and to-be-
estimated, class-specific regression parameters, coefficient vectors, γs, and constants, δs, the class 
membership probability is given by: 
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In this section, the MNL model from utility equations in (3.1) is used as the underlying behaviour model for 
each class. Although a 4-class model yielded the best between efficiency and model fit, two classes had a 
membership of less than 10%; therefore, a 3-class model is used (Table 3.5, LCC-3) which did not perform too 
poorly on model fit in comparison, has reasonable class sizes, and offers better interpretability. In the 
largest class (49.20%), behaviour is similar to the MNLL model with an additional effect wherein value of 
certainty increases slightly with delays. The second (33.31%) and third (17.48%) groups show a lexicographic 
preference for faster trains and the first train, respectively (at least, up to the attribute levels used in the 
survey). In addition to their inherent preferences, it is possible that those who strongly prefer the faster 
train, may have translated the offered alternatives into real-life services, where the trains are, in fact, 
different, and chosen one train type over another for reasons not measured in the survey. In the 
Netherlands, the express trains (Intercity) offer additional services such as air-conditioning and Wi-Fi 
internet. 

The class membership model tries to explain individuals’ association with the different behavioural regimes 
in each class on the basis of socio-demographic, attitudinal, or revealed behaviour variables. Holding the 
smallest group as reference, younger travellers and those with a lower perception of reliability tend to 
make more complete trade-offs between certainty in waiting time and travel time. This may indicate that 
those who trust the system less are more deliberate in their choices. On the other hand, older travellers and 
those who report to be more engaged while waiting have a strong preference for the faster train. As 
discussed previously, higher engagement may lower the perception of waiting time tilting the choice in 
favour of a smaller in-vehicle time. 
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Table 3.5: Estimation results for mixed logit and latent class choice models for the Netherlands 

Model MLCS MLALL    

Initial LL -3898.260 -3898.260        

Final LL -3123.075 -3113.413        

BIC 6299.867 6313.175        

 Value p Value p  Value p       

βcertainty 1.240 0.00 2.090 0.00 βage -0.067 0.06       

βIVT -0.169 0.00 -0.171 0.00 βfemale 0.115 0.03       

βAWT 0.102 0.00 0.102 0.00 βengagement -0.082 0.02       

βEWT - - - - βperception -0.063 0.07       

βDEL - - - -          

σcertainty 0.416 0.04 0.294 0.27          

σIVT 0.075 0.00 0.078 0.00          

σAWT 0.062 0.00 0.062 0.00          

Model LCCM-3 class  

Class size 49.20% 33.31% 17.48% Class membership 

 Class 1 Class 2 Class 3  Class 3 (ref.) Class 1 Class 2 

 Value p Value p Value p  Value p Value p Value p 

βcertainty 1.590 0.00 - - 0.923 0.01 βintercept 0 - 2.66 0.00 -1.280 0.04 

βIVT -0.286 0.00 -0.061 0.00 -0.042 0.01 βage - - -0.206 0.02 0.203 0.03 

βAWT 0.238 0.00 - - 0.123 0.00 βengagement - - - - 0.272 0.00 

βEWT - - - - 0.0285 0.10 βperception - - -0.162 0.03 - - 

βDEL 0.019 0.15 - - - -        

 

3.1.5 SUMMARY 

This section proposes a realistic route choice situation where travellers’ subjective beliefs towards waiting 
time uncertainty can be quantified in terms of a certainty equivalent. A stated preferences experiment with 
the choice situation is carried out. Findings indicated an average preference for certainty, with travellers 
willing to accept between 3 and 10 minutes of extra in-vehicle time to avoid uncertainty. We further report 
the effects of context and personal characteristics on beliefs regarding uncertainty for the three countries. 
Finally, heterogeneity in behaviour is analysed for the Netherlands where we have more data.  

A limitation of this analysis was that stated preferences experiments may not be very conducive in eliciting 
the effects of context variables. Future studies could focus on designing experiments that can make 
respondents ‘feel’ the changes in perception of uncertainty due to contextual variables such as elapsed 
waiting time and delays. Alternatively, given the increasing availability of smart card and vehicle location 
data for public transport networks, subjective beliefs towards uncertainty may be assessed using revealed 
preferences from the proposed choice situation.  
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3.2 MODEL 2: INFERRING ROUTE CHOICE SETS4 

There is widespread agreement in the marketing field that consumption choices occur in a two-stage 
process whereby consumers first form a consideration choice set and then make the final choice from this 
set [61]. Choice set composition and size can affect the ultimate decision in a number of ways [62], with the 
most obvious being that the exclusion of an alternative from the choice set means that it cannot be 
selected. Identification of choice sets may be straightforward when the number of alternatives are limited 
but it becomes more difficult as this number increases. In these cases, correctly identifying the choice set is 
important not only for real-world application of estimated choice models but also for the estimation of 
choice models from revealed preferences where choices are observed but choice sets are not. 

Public transportation provides vital, sustainable transportation in many regions, making their planning, 
maintenance and operation a priority for authorities. In order to provide an appropriate level of service, 
understanding traveller behaviour to correctly model network flows has become increasingly important. 
Amongst other traveller decisions, route choices have a significant impact on network flows. Therefore, for 
both, estimation and application of route choice models, identification of route choice sets is a crucial step 
[62]. 

However, identifying route choice sets for origin-destination (OD) pairs in a network is a non-trivial task for 
several reasons. First, due to the combinatorial nature of the problem, the number of available and 
attractive routes is usually large. Second, public transport characteristics, such as fixed routes, schedules, 
and headways, which are usually time-dependent, add to the complexity of the task. Finally, the existence 
of different forms of travel costs, for instance, transferring or in-vehicle time, mean that traveller 
preferences have to be taken into account when identifying route choice sets. 

Given the importance and complexity of route choice set identification, several studies in transportation 
literature have either entirely focussed on or have employed some form of route choice set identification 
methodology. These methodologies can be broadly divided into: (i) direct identification of choice sets and 
(ii) choice set generation methodologies (CSGMs). 

Direct identification of choice sets may be based on reporting or observations of non-selected and selected 
alternatives, respectively. In the former, surveyed travellers are asked to report alternatives to their chosen 
route that they did not select but considered. This method has the obvious advantage that researchers do 
not have to guess what travellers have in their mind and the consideration set is known at the individual 
level. However, this reporting is subject to a number of errors (e.g., forgetfulness) and, as suggested in 
[63], is ‘at best a subset of the true choice set’. Furthermore, such interview techniques are time consuming 
and difficult to implement when choice sets are required for network-wide analysis. 

For network-wide identification of choice sets, observations of selected alternatives offer a more suitable 
data source. In this method, the sets of unique routes observed are assumed to be the choice set for the 
respective OD pairs. The argument is that, if such data is collected over a long period of time it should 
include all routes considered by travellers. Practically, this is facilitated by the creation of large data sources 
as an increasing number of public transport services turn to automatic fare collection (AFC) technologies. 
As a result, several studies using smart card data employ this method for the identification of choice sets. 
However, this technique precludes the possibility of taking into account why some non-selected but 
feasible routes are never chosen [64]. Moreover, the transferability of behaviour parameters, estimated 
with choice sets thus obtained, is precarious because matching choice set generation methodologies are 
not available for other public transport networks [65]. 

                                                                    
4 This section is based on [60]S. Shelat, O. Cats, N. v. Oort, and H. v. Lint, "Calibrating Route Choice Sets for 
an Urban Public Transport Network using Smart Card Data," in 2019 6th International Conference on Models 
and Technologies for Intelligent Transportation Systems (MT-ITS), 2019, pp. 1-8, 2019. 
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Some drawbacks of direct identification of route choice sets can be overcome by using CSGMs. The aim 
with this approach is to develop a generic algorithm, that satisfies requirements associated with the 
purpose of the choice set [66], for identification of route alternatives. Thus, route CSGMs are suitable for 
network-wide application and by nature more transferable than direct identification techniques. These 
methods are typically classified into: (i) deterministic and stochastic shortest path, (ii) constrained 
enumeration, and (iii) probabilistic approaches [66, 67]. Although, a complete literature review is out of 
scope (see [66, 67]); below, the most important approaches are discussed and the comparison of their 
performance is reviewed. 

Shortest path-based methodologies, which compose the largest group of models, search for optimal routes 
in the network and assume them to be the route choice set. Variations are based on the link impedances 
optimized, route constraints, and other search criteria [66, 67]. Approaches in this category that are based 
on either purely topological criteria or use only travel time have the drawback that the choice sets do not 
reflect traveller preferences. On the other hand, methods that do have some degree of behavioural 
sophistication, such as the link-labelling approach [68], are criticised for their dependence on analyst 
judgments to make assumptions regarding traveller behaviour for the definition of objective functions [66, 
67, 69]. Furthermore, shortest path methods tend to produce more homogenous routes and are, therefore, 
typically unable to reproduce all observed routes. 

Unlike the above approaches, constrained enumeration methodologies are based on rules other than 
minimum cost paths. Since these methods aim to generate all possible routes between OD pairs whilst 
being constrained by some rules, they usually perform better in terms of reproducing observed routes than 
the shortest path CSGMs [66]. Constraints used to reduce the number of irrelevant routes generated may 
be based on logic or common sense, feasibility, degree of choice set heterogeneity, or behavioural 
preferences [63, 70]. The disadvantages of this approach include the high computational effort required for 
route enumeration and the fact that, here too, the method depends on the definition of behavioural 
constraints which have been typically based on the expertise of analysts. Despite this drawback, in a 
comparison of various (uncalibrated) route CSGMs, a branch-and-bound based enumeration with threshold-
based behavioural constraints performed better than other shortest path approaches on all the validation 
criteria considered [70, 71]. 

From the common disadvantages of the above approaches, it is clear that calibration of behavioural 
parameters is an important aspect of route CSGMs. Yet, while studies often validate their models against 
observed (selected) or reported (non-selected) route alternatives, calibration is rarely performed. A Scopus 
search5 for studies that perform such calibration returned only five relevant studies, including two studies 
that considered public transport modes [72, 73]. The latter studies use trial-and-error methods to calibrate 
their models on the basis of analyst judgments and, observed and reported route alternatives. However, a 
shortcoming of these studies is that sample sizes of the data used are relatively small in comparison to the 
networks considered (which may be at least in part due to data collection difficulties). 

Given the importance of identifying route choice sets in public transport networks and the drawbacks of 
existing studies, we propose a methodology that adopts an intuitive and accepted behavioural model of 
choice set formation, and includes calibration of parameters of the same using smart card data. The 
proposed CSGM takes a constrained enumeration approach similar to those used (and proven to perform 
well) in [63, 70]. However, the methodology developed here avoids (almost completely) the need for any 
subjective assumptions regarding traveller preferences by delaying the application of behavioural 
constraints until after all logical and feasible routes have been generated. Instead of assumptions, 
behavioural constraints are directly obtained from AFC data, the increasing availability of which makes it 
possible to more easily collect network-wide route choice observations. Moreover, the constraints, which 
                                                                    
5Search term: ( TITLE-ABS-KEY ( calibr* )  AND  TITLE-ABS-KEY ( ( route  OR  path ) )  AND  TITLE-ABS-KEY ( ( 
"choice set*"  OR  "consideration set*" ) ) ); Access date: 8 February 2019 
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are based on a non-compensatory decision model, offer an intuitive insight into travellers’ choice set 
formation preferences (section 3.2.2). To demonstrate the methodology, it is applied to the urban public 
transport network of The Hague, Netherlands. 

In the next section, the behavioural model used for choice set formation is discussed. Section 3.2.2 
describes the choice set generation methodology which is applied to the urban public transport network of 
The Hague, Netherlands in section 3.2.3. Section Summary3.2.4 concludes with a summary. 

3.2.1 BEHAVIOURAL MODELS FOR CHOICE SET FORMATION 

When a large number of alternatives are involved, consumers are likely to apply heuristic decision rules, 
rather than perform a comprehensive evaluation, when forming their considered choice set. These choice 
set formation heuristics are usually more reasonable because of the relatively high (cognitive and explicit) 
costs of complete evaluations [61]. Therefore, since the number of route alternatives available in 
transportation networks is typically large, travellers can be reasonably expected to use such heuristics to 
identify their choice sets [66, 67]. 

While complete evaluations are typically compensatory in nature, heuristics involve non-compensatory 
decision rules. Compensatory models take into account trade-offs between alternative attributes whereas 
non-compensatory models only apply constraints on individual attributes. A number of non-compensatory 
decision models have been proposed in literature, such as: (i) disjunctive, (ii) conjunctive, (ii) lexicographic, 
and (iv) elimination-by-aspects [74]. Some of these have been used in the route choice set generation 
literature. 

Disjunctive and conjunctive rules both set minimum thresholds for all important attributes. The former 
accepts alternatives that comply with at least one requirement while the latter needs all attribute 
thresholds to be met. Most route CSGMs that apply detour thresholds to different attributes (e.g., [63, 70]) 
are applying conjunctive rules. In these studies, thresholds are usually set as multiplicative factors (greater 
than one but not necessarily integers) of the attribute value of the best performing alternative (for that 
particular attribute). 

Under lexicographic decision-making, first, attributes are ranked by importance; then alternatives are 
selected on the basis of their performance of the top-ranking attribute. In case of a tie, the performance on 
the second-best attribute is checked, and so on. Since this method does not set thresholds, desired choice 
set sizes need to be defined for their formation (lexicographic and conjunctive decision rules become the 
same if choice set size is defined for both) [61]. The link-labelling route CSGM [68], which assumes that 
travellers optimize paths for different attributes, is an example of this category. 

Elimination-by-aspects (EBA) combines attribute ranking and setting of thresholds. Although the original 
version [75] was proposed as a probabilistic rule, most applications for choice set formation use a 
deterministic version [61]. For the choice set formation, first the most important attribute is selected and 
alternatives that do not meet its threshold are eliminated. This is repeated until all attribute thresholds have 
been checked although in another version, elimination stops once the required choice set size has been 
achieved [61]. Based on the literature review conducted here, no route CSGM could be found that uses this 
behavioural model. A possible reason could be that in the absence of a calibration method, because this 
model combines ranking and setting thresholds, researchers are required to make more assumptions 
regarding traveller behaviour. 

This study assumes deterministic EBA as the behavioural model for route choice set formation. In the 
version employed here, no assumptions are made regarding choice set size. Deterministic EBA implies that 
the choice set for an OD pair at a given time is the same for all travellers. Attribute values are obtained from 
the general transit feed specification (GTFS) data. Therefore, attributes included in the process are limited 
to those observable in this data.  
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The output of the methodology proposed here are route choice sets per OD pairs and time periods. Each 
alternative in the route choice set is defined uniquely by the sequence of alighting stations and the 
common lines (lines passing through the same sequence of stations) connecting the respective stations. 
Although common lines are thus accounted for, issues concerning partial route overlap are assumed to be 
handled at the next stage of choice modelling. In addition to the route choice sets, calibration of the choice 
set formation model returns two insights regarding traveller behaviour: (i) the importance ranking of 
attributes and (ii) the acceptable detour threshold for each attribute. 

3.2.2 ROUTE CHOICE SET GENERATION METHODOLOGY 

To give structure to the complexity of route choice set identification, a hierarchy of route choice sets (for a 
given OD pair and time period) is proposed in [76] and presented from traveller and researcher 
perspectives in [63]. Similar to those, for the methodology presented here, the following hierarchy is used 
(Figure 3.6, right hand side): (i) complete network containing the universal set of all possible paths from 
origins to destinations, (ii) logical routes per OD pair, (iii) feasible routes per OD pair for different times (OD-
T), (iv) considered routes per OD-T, and finally (v) chosen routes. Here, the consideration route set is 
obtained from the generated-feasible and observed route sets. The following sub-sections describe the 
steps in the proposed methodology (Figure 3.6, centre) that take some inputs and produce the desired 
outputs (Figure 3.6, left hand side), by progressively moving down the hierarchy. 

3.2.2.1 INPUTS 

Two main data sources are required for the route CSGM proposed here: (i) GTFS and (ii) AFC. GTFS data 
contains information regarding the service layer of the network and its properties. These define public 
transport lines connecting different sequences of stops in the network, the in-vehicle travel time (time 
taken by a vehicle) between OD pairs, and the frequencies (vehicle departures per hour) of each line. 
Although, a frequency-based system is assumed in this CSGM, line frequencies are allowed to be time-
dependent. AFC data is used to generate the set of selected route alternatives. Ideally, for each 
observation, the data should contain information regarding the sequence of stops (i.e., origin, transfers, 
and destination), the lines used between each stop, and boarding times. It should be noted, however, that 
for data from nearly all AFC systems, at the least, transfer inference will be required. 

In addition to the above data sources, rules regarding which routes are logical, and which aspects and 
thresholds are considered by the calibration process are also inputs to the methodology. However, in the 
current implementation, these inputs are defined as part of the methodology. 
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Figure 3.6: Overall Methodology of the choice set generation methodology 

 

3.2.2.2 NETWORK REPRESENTATION 

Proper network representation is key to the computational efficiency of route generation. For the 
topological constrained enumeration methodology used in this study, the public transport network is 
represented in the P-space which explicitly represents the service layer: nodes are stops while links are 
(groups of) public transport lines that provide direct (transfer-less) connections to other stops. Although 
urban public transport networks may use schedules, this study assumes a frequency-based system. Thus, 
time is not included in the graph representing the network.  

Stops in the representation are defined by the ‘parent station’ field in the GTFS data. Moreover, different 
lines are grouped together as one connection in P-space if they pass through the same sequence of stops, 
that is, they are common lines. Each cell in the P-space adjacency matrix contains information about the 
connections between the origin and destination stops. For each connection, this information consists of the 
common lines and the stops they traverse (pass without alighting) through for this connection. 

Since the generation methodology also considers transfers which require walking to another stop, walkable 
links are stored as a binary adjacency matrix of all stops. To avoid generating too many irrelevant 
alternatives, a conservative threshold of 200 Euclidean metres is set as the maximum acceptable walking 
distance. 
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3.2.2.3 CONSTRAINED ENUMERATION OF LOGICAL ROUTES 

In this section, we detail the enumeration – how different routes are obtained – and the constraints on this 
enumeration – how the enumeration procedure is stopped. 

Enumeration 

The enumeration methodology applied here uses a one-to-all, breadth-first search algorithm, similar to that 
used in [77]. The methodology is applied to the P-space graph representation of the network as defined 
above. 

First, a stop is selected as the origin and the vertex root of the search tree. The stops it is directly connected 
to in the P-space graph of the network become destinations; this is the first level of the search tree. The 
information contained in the connections (lines and traversed stops) are stored for the respective OD pairs. 
For the next level of the search tree, the following become intermediate origins: transfer stops (stops 
connected by more than one line) amongst the neighbouring stops and stops accessible by walking from 
the neighbouring stops. Then the stops directly connected to these intermediate origins become 
destinations and connection information is stored, retrospectively from the origin stop (vertex root), for 
the respective OD pairs. For the next level, intermediate origins are selected in the same way as above, and 
the process is repeated up to a desired depth of the search tree. This way, all route alternatives between 
the origin stop and others are generated and stored. The procedure can then be repeated with another 
stop as the origin. 

 

Constraints 

Obviously, simply enumerating this universal set of routes would be unending. To prune the search tree, the 
depth is constrained by assuming that travellers accept a maximum of two transfers. This behavioural 
assumption should be reasonable for most urban public transport networks. Additionally, to ensure that 
only logical routes are produced, two rules are used as breadth-wise constraints to the enumeration. (i) No 
loops – traversing through, alighting at, or walking to stops previously traversed through or boarded from 
is not allowed. (ii) No transferring between common lines – alighting at a stop which is connected by the 
same set of lines as the previous connection is not allowed. Since travellers may want to shift time spent 
waiting for a particular line downstream, transferring to stops with a subset of the previous connection’s 
lines is permitted. In this case, this subset of lines is removed from the previous connection to ensure that 
transfers do not occur between the same lines. In the current implementation, it is assumed that travellers 
do not shift their waiting times by walking to another stop, hence, walking to a stop connected by a subset 
of the lines as the previous connection is not allowed. These logical constraints are only applied after the 
first level of the search tree. 

3.2.2.4 ATTRIBUTE ASSIGNMENT FOR FEASIBLE ROUTES 

In this step, route alternatives, that were generated from an unweighted graph, are assigned attribute 
values. This is required to remove infeasible routes as well as for the consideration set formation in section 
3.2.2.6. 

 

Attribute Values 

The following route attributes are observable from the GTFS data, and therefore included in the study: (i) 
waiting time, (ii) in-vehicle time, and (iii) number of transfers. Currently, the waiting and in-vehicle times 
over different legs of the route are not considered separately and only the total values are used. 
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Expected waiting time for connections between two stops is calculated as the inverse of the sum of 
frequencies of the connecting lines, implicitly assuming them to be evenly spaced as well as assuming 
uniform arrivals of travellers at stops. The time-dependent nature of public transport line frequencies is 
taken into account by assigning them separately for each hour of the day in weekdays and weekends, 
respectively. Routes that become infeasible at a certain time (because a link has zero frequency) are 
eliminated from the feasible choice set for the respective time period. Values of the other attributes are 
time-independent. Although there might be small time-dependent fluctuations in the planned in-vehicle 
times, they are ignored for the sake of computational efficiency. 

As discussed in section 3.2.1, the consideration set formation model employed here uses the EBA 
behavioural model, which requires setting threshold constraints to different attributes. These thresholds 
are some factors of the attribute values of the alternatives (in the same time period) that perform best on 
the respective attributes. In preparation for the calibration step, these factors are calculated for each 
attribute in all the alternatives. Since waiting and in-vehicle times are more continuous in nature, 
multiplicative factors are employed, whereas for number of transfers an additive factor is used. 

 

Dominated Alternatives 

Once attribute values have been assigned, alternatives that are state-wise dominated, that is, perform 
worse on all attributes, by others (in the same time period) are removed. It is rarely disputed that choosing 
such a dominated alternative is irrational. Although the existence of dominated alternatives in the choice 
set may have a decoy effect (see [78]), such effects are rarely modelled in the route choice context. 

3.2.2.5 MERGE GENERATED AND OBSERVED ROUTES 

The calibration uses generated-feasible routes as well as those observed from AFC data. This step merges 
these two route sets on the basis of the sequence of stops boarded, lines used, the hour of the first 
boarding, and the final destination stop. For the calibration, only those observed routes that were also 
generated are considered. Given that the constraints assumed during route enumeration are not very 
restrictive, discarding observations that are not generated should not affect the final calibration too much. 
In case, the overall coverage does turn out to be low, it may make sense to check the AFC data for issues 
such as improper transfer inference. 

3.2.2.6 CALIBRATION USING ELIMINATION-BY-ASPECTS 

In EBA, travellers are assumed to rank and set threshold cut-offs for attributes. In order to deduce these 
preferences, the generated feasible route alternatives may be compared with the observed ones. For such 
a comparison, two indicators are commonly used in literature, albeit for validation purposes rather than 
calibration: (i) coverage – the proportion of observed routes that have been generated, and (ii) efficiency – 
the proportion of generated routes that are observed.  

With respect to calibration, clearly, the likeliest combination of choice set formation preferences is one that 
maximize both coverage and efficiency; that is, reproduces as many observed routes as possible while not 
generating too many irrelevant alternatives. Thus, to derive EBA preferences, an optimization problem that 
maximizes these indicators is setup. First, however, small modifications to the above indicators are 
proposed. 
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Indicators 

In their simplest form, coverage and efficiency do not take into account demand across OD pairs and weigh 
each route alternative as the same. For example, if there is an OD pair with only one trip, it would still have 
an effect on the choice set calibration even though there is little behaviour to be observed. To this end, the 
coverage indicator is modified by simply adding demand weights per route. Efficiency is changed more 
fundamentally by making it a proportion of routes not observed (but in the generated feasible choice set), 
rather than a proportion of generated routes, to avoid asymmetric demand weighting in the definition. 
These indicators are defined below. 

Let 𝑁𝑁 be the set of stops in the network under consideration; and 𝑅𝑅𝑖𝑖𝑖𝑖
𝑓𝑓  the set of generated-feasible 

between OD pairs 𝑖𝑖, 𝑗𝑗 ∈ 𝑁𝑁, 𝑅𝑅𝑖𝑖𝑖𝑖𝑜𝑜  the set of observed routes therein (𝑅𝑅𝑖𝑖𝑖𝑖𝑜𝑜  ⊆ 𝑅𝑅𝑖𝑖𝑖𝑖
𝑓𝑓 ), and 𝑅𝑅𝑖𝑖𝑖𝑖𝑐𝑐  be the calibrated 

choice set, such that 𝑅𝑅𝑖𝑖𝑖𝑖𝑐𝑐  ⊆ 𝑅𝑅𝑖𝑖𝑖𝑖
𝑓𝑓 , for a given combination of EBA preferences. Then, Figure 3.7 gives the four 

possible sets (and notations) of route alternatives that result when comparing the observed and calibrated 
choice sets. Finally, let 𝑞𝑞𝑖𝑖𝑖𝑖  be the total of all demand on routes 𝑅𝑅𝑖𝑖𝑖𝑖𝑜𝑜 , and 𝑞𝑞𝑖𝑖𝑖𝑖𝑇𝑇𝑇𝑇, 𝑞𝑞𝑖𝑖𝑖𝑖𝐹𝐹𝐹𝐹 be the total demand for 

route sets 𝑅𝑅𝑖𝑖𝑖𝑖𝑇𝑇𝑇𝑇, 𝑅𝑅𝑖𝑖𝑖𝑖𝐹𝐹𝐹𝐹, respectively. Then, coverage and efficiency are defined in this study as: 

 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
∑ 𝑞𝑞𝑖𝑖𝑖𝑖

𝑇𝑇𝑇𝑇
𝑖𝑖,𝑗𝑗

∑ 𝑞𝑞𝑖𝑖𝑖𝑖
𝑇𝑇𝑇𝑇+𝑞𝑞𝑖𝑖𝑖𝑖

𝐹𝐹𝐹𝐹
𝑖𝑖,𝑗𝑗

, 𝑎𝑎𝑎𝑎𝑎𝑎 (3.6) 

 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =
∑ �𝑅𝑅𝑖𝑖𝑖𝑖

𝑇𝑇𝑇𝑇�𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖,𝑗𝑗

∑ (�𝑅𝑅𝑖𝑖𝑖𝑖
𝐹𝐹𝐹𝐹�+�𝑅𝑅𝑖𝑖𝑖𝑖

𝑇𝑇𝑇𝑇�)𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖,𝑗𝑗
, (3.7) 

where |⋅| denotes set size. Then, to achieve a balance between coverage and efficiency, the following 
optimization indicator is minimized for each attribute: 

 𝑥𝑥𝑎𝑎 = abs(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎 − 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎). (3.8) 

 

 

Figure 3.7: Comparison between calibrated and observed choice sets 

 

Algorithm 

The EBA based analysis conducted here considers only a few aspects (i.e., attributes). Moreover, it is 
reasonable to expect that the potential thresholds are close to the respective smallest values (i.e., 1 for 
waiting time and in-vehicle time ratios, and 0 for difference in number of transfers). Therefore, to deduce 
EBA preferences, a brute force algorithm may be feasibly employed. The algorithm to calculate indicator 
values for different attribute rankings (Figure 3.8) works as follows: all possible attribute permutations are 
listed; for a given permutation, different thresholds from the pre-defined search space are tried to find the 
minimum indicator value for the first attribute; before repeating this for the next attribute, routes that do 
not comply with the previously found threshold(s) are eliminated; this is repeated until all attribute 
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thresholds (and indicator values) for the permutation have been found; and the process is repeated for the 
next permutation. 

It should be noted that a key difference from other threshold based CSGMs is the sequential elimination of 
routes. Thus, for each permutation we have a number of optimization indicator values associated with each 
attribute in it. The performance of a permutation is assessed by calculating the natural logarithm of the 
product of attribute optimization indicator values in that permutation: 

 𝑥𝑥𝑝𝑝 = ln�∏ 𝑥𝑥𝑎𝑎
𝑝𝑝

𝑎𝑎 �. (3.9) 

Since the optimization indicator has to be minimized, the permutation with the lowest value is considered 
optimal. 

 

All feasible 
routes

Aspects 
(attributes)

Threshold 
search space

List attribute 
permutations

Calculate indicator values for 
all thresholds of first attribute

Filtered feasible 
routes

Filter out routes using stored 
thresholds for the permutation

Attribute thresholds 
available for first 

permutation?

No Yes

Threshold value for 
minimum indicator

Yes

Yes

No

No

Start

End

All attributes checked for 
this permutation?

All permutations checked?

Optimal threshold + 
indicator values 

Delete current 
attribute

Delete current 
permutation

 

Figure 3.8: Elimination-by-aspects brute force calculation of indicator values for different attribute 
rankings 
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3.2.3 CASE STUDY: THE HAGUE TRAM & BUS NETWORK 

To demonstrate the above methodology and obtain attribute ordering and threshold preferences of 
travellers, the urban public transport network of The Hague, Netherlands (Figure 3.9) is used as a case 
study. We first describe the network and data used, then present our analysis and results, and finally follow 
up with a discussion. 

3.2.3.1 SETUP 

The network consists of both tram and bus lines which mainly serve The Hague but also connect to the 
neighbouring cities of Zoetermeer and Delft. The case study uses smart card data from March 2015 and the 
corresponding GTFS data for the analysis. The network then consisted of 12 tram and 8 bus bidirectional 
lines serving a total of 459 stations (as defined under ‘parent stations’ in the transit feed). 

The AFC system on both trams and buses requires travellers to check-in and out with the OV-chipkaart, (the 
national public transport smart card; for more details see [79]) every time they board and alight a vehicle; 
thus, potentially allowing full observation of chosen routes. Moreover, since, a large number of travellers in 
the network use smart cards for fare payment a significant amount of data is available for analysis. The 
data, made available by the operator, is pre-processed such that individual smart card transactions (check-
ins and outs) are already chained to approximately 5.8 million journeys from origin to destination stations. 
Out of these, the case study, which only includes trips in weekday extended morning peak hours (0600h to 
1100h), makes use of about 1.5 million journeys. 

 

 

Figure 3.9: The Hague tram and bus networks 

3.2.3.2 ANALYSIS 

The pre-determined journeys used in the case study have been inferred using a simplistic rule based on 
maximum transfer time (35 minutes [80]). Such inference methods typically lead to an overestimation of 
routes with more transfers and can leave seemingly illogical trips in the data. A full and robust (against 
disruptions) transfer inference algorithm as given in [80] can solve these issues. However, this is not done 
and misidentified journeys are directly filtered out when they do not match with the generated feasible 
routes. This seems to have a relatively low impact for the time period selected for the analysis as the overall 
coverage of the generated-feasible routes is nearly 85 percent of the observed routes. 

Figure 3.10 compares the logical, feasible, and identified route choice set size distributions. As one would 
expect, logical choice sets are typically large (median size: 58 routes). A sharp decline in the sizes for the 
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feasible set (median size: 9 routes) is brought about mainly by the state-wise dominancy elimination rule, 
although some routes are also removed due to service unavailability in certain time periods.  

For the EBA calibration, three attributes, waiting time, in-vehicle time, and number of transfers, are 
considered. Based on experience and with an eye on computational efficiency, the threshold search space 
for the former two is defined between 1 and 2 with a step size of 0.025, while all possible values (0 to 2) are 
tried for the latter. Note that, if an intuition for these values is not available, one could simply try a larger 
search space. 

 

 

Figure 3.10: Comparison of choice set size distributions (normalized) of logical, feasible, and identified 
route choice sets (axes top- and right-censored for better focus) 

3.2.3.3 RESULTS 

Performance of the six permutations (Figure 3.11) indicate a clear preference in attribute ranking. Similar to 
findings for fully compensatory route choice models in literature, people rank number of transfers as the 
most important parameter followed by waiting and in-vehicle time, respectively.  

For all permutations, constraints on individual attributes are quite restrictive: for waiting and in-vehicle time 
most multiplicative thresholds lie between 1 and 1.1 (meaning that only a 10 percent increase is acceptable), 
while for transfers, routes with even a single extra transfer are unacceptable in the choice set. These 
thresholds are lower than those assumed in CSGM studies assuming a conjunctive model for consideration 
set formation. For instance, for road traffic, the threshold used for travel time is 1.5 in [70]. Moreover, 
because of low thresholds, the choice sets sizes are also small (Figure 3.10) with a median size of only 2 
routes. Table 3.6 gives the threshold values obtained for individual attributes. 

Table 3.6: Optimal Attribute Ranking and Thresholds 

Rank Attribute Threshold a Sequential Coverage 

1 Number of transfers 0 99.3% 

2 Waiting time 1.1 82.0% 

3 In-vehicle time 1.1 78.4% 
a Threshold accuracy for waiting and in-vehicle time = 0.025 
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To assess the performance of the calibration the overall coverage of the EBA model can be calculated as 
the product of the coverage values obtained sequentially for each attribute (Table 3.6). The overall 
coverage for this case study is 63.9%. 

 

 

Figure 3.11: Performance for different attribute rankings (Num-T: number of transfers, WT: waiting time, 
IVT: in-vehicle time) (lower is better) 

 

 

Figure 3.12: Coverage (C), efficiency (E), and optimization indicator (I) values (y-axes) by threshold values 
(x-axis) of different attributes for the optimal permutation 
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Figure 3.13: Comparison between the number of generated-feasible routes, number of observed routes 
and average in-vehicle times (in seconds) per origin, destination, and time period (x-axis right-censored 

for better focus) 

3.2.3.4 DISCUSSION 

Figure 3.12 takes a deeper look into the values of individual thresholds for the optimal permutation. It can 
be seen that for the first attribute – number of transfers – at 99.3 percent, coverage is already extremely 
high with no extra transfers; a clear reflection of travellers’ dislike for transferring. Thus, any increase in the 
transfer threshold only decreases efficiency thereby increasing the indicator value. For waiting time too, 
the initial coverage is quite high, meaning that improvements in coverage tend to be quite slow. Accepting 
twice the least possible waiting time only increases coverage from 79.9 to 93.3 percent. On the other hand, 
efficiency quickly decreases by approximately 40 percentage points. Although the initial slope for coverage 
is slightly higher than efficiency, the overall change in the latter is higher for in-vehicle time too. The fact 
that the initial value of coverage is more moderated for this attribute could be because the values are 
calculated after the feasible choice set has been filtered based on the thresholds of the previous two 
attributes. Finally, it should be noted that the for all three attributes, the optimal indicator values are 
unambiguous. 

A possible explanation for the restrictive constraints may be a combination of the following statistical 
observations and hypothesis. The statistical observations are (Figure 3.13) (i) OD pairs with a high demand 
tend to be nearby (in terms of in-vehicle time) and (ii) OD pairs that are farther away tend to have more 
feasible routes generated by the CSGM. The hypothesis is that (iii) travellers are either able to evaluate 
alternatives better or have a lower threshold acceptance for OD pairs that are nearby. From statistical 
observation (i), the hypothesis in (iii), and the definition given in equation (3.6), it can be seen why the 
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coverage values are already quite high at low thresholds. This increase in coverage is mainly due to the 
highly-used routes between OD pairs that are close to one another. On the other hand, statistical 
observation (ii) and the definition in equation (3.7) explain why non-selected alternatives from farther away 
OD pairs might play a larger role in the value of efficiency. This potential disconnect might cause a decrease 
in efficiency that is not sufficiently balanced by the increase in coverage, leading to smaller thresholds. The 
larger slopes of efficiency in comparison to coverage (Figure 3.12) seem to indicate that this is indeed the 
case here. 

Finally, while the coverage (63.9%) on its own is a somewhat moderate performance, it may be expected 
because, in an effort to be more transferable, the model trades-off coverage for an increase in efficiency. 

3.2.4 SUMMARY 

Route choice set identification for public transport networks is a vital but complicated task. Identifying the 
correct route choice sets are crucial for both, estimation and application, of route choice models. However, 
approaches developed and commonly employed in literature either lack transferability (observation-driven 
methods) or require strong assumptions regarding traveller behaviour (uncalibrated CSGMs).  

Given this key scientific gap, and the context of increasing availability of smart card data for public 
transport networks, this research makes two crucial contributions. First, a choice set generation 
methodology is proposed which uses elimination-by-aspects as the consideration set formation model. This 
model adds more behavioural dimensions over those used previously by taking into account attribute 
ranking as well as threshold constraints. Second, rather than making subjective assumptions regarding 
traveller preferences, the elimination-by-aspects model is calibrated using revealed behaviour observations 
from smart card data. The proposed methodology can be used to identify choice sets for estimating route 
choice models from revealed preferences as well as to predict alternative shares on the basis of available 
choice parameters. 

Application of the proposed methodology to the urban public transport network of The Hague revealed 
that the number of transfers is the most important attribute for travellers, followed by waiting time, and in-
vehicle time. Furthermore, the thresholds obtained for individual attributes are quite restrictive indicating 
that travellers make more optimal choices than previously assumed. Although the overall coverage for the 
EBA model is on the lower side, it makes up for this by being a more transferable model rather than a 
network-specific one. 

An important limitation in the current implementation of the model is the assumption that the public 
transport services are frequency-based. Based on this, waiting times are calculated from the headways of 
individual lines under the assumption of evenly spaced arrivals of public transport lines and uniformly 
distributed traveller arrivals at stops. These assumptions may not hold outside rush hours or for non-urban 
networks where line frequencies are often lower, or when lines are explicitly synchronised to reduce 
transfer waiting time.  

To overcome issues arising from the assumption of a frequency-based system, future implementations may 
consider using the following: (i) a schedule-based network which includes time in its representation and (ii) 
more complex traveller arrival models. Further improvements to the model could include taking into 
account that travellers behave differently for OD pairs that are relatively near, as hypothesised in the 
discussion of the case study results. Finally, future research could focus on using the calibration procedure 
proposed here, for the comparison of different behavioural models of route choice set formation. 
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3.3 MODEL 3: ESTIMATING ROUTE CHOICE MODELS FROM REVEALED 

PREFERENCES6 

In the previous section, the focus was on the first of the two steps in a decision process, that is, choice set 
formation. We applied our proposed elimination-by-aspects methodology to calibrate choice sets of 
travellers in The Hague using  revealed preferences observed from smart card data in the urban public 
transport network. In this section, we use the same dataset to analyse the second step which we assume to 
be a fully compensatory choice. In addition to a conventional route choice model, we also compare 
different reliability representations to assess which can best model travellers’ reactions to waiting time 
variations. Specifically, we consider the regular deviations from schedule and the spread of these 
deviations. Compare the analysis of behaviour here with the discussions in section 3.1 – as is common in 
revealed preference studies, travellers make decisions under natural ambiguity but we analyse behaviour as 
if the travellers were aware of the distributions of waiting time reliability.  

First, we present a generic methodology to estimate such route choice models in different public transport 
systems. Then, we apply our methodology to the smart card data from The Hague and present our results. 

3.3.1 METHODOLOGY 

To estimate the value of reliability from the revealed preferences offered by smart card data, a 
conventional sequence of steps are followed. First, the required data is prepared for the subsequent steps, 
followed by the identification of choice sets and assignment of attribute values, which allows the final step 
of choice model estimation. 

3.3.1.1 REQUIRED DATA AND PREPARATION 

Three main data sources from the public transport system under study are required: (i) automatic fare 
collection (AFC), (ii) automatic vehicle location (AVL), and the (iii) general transit feed specification data. 
While AFC data provides behavioural observations, the latter two, being data on the executed and 
scheduled operations, give information on trip characteristics including service reliability. 

To analyse route choice behaviour, complete journeys — as a sequence of trips (i.e., rides on a single 
vehicle) without intervening trip-generating activities — have to be known. However, this is usually not 
directly possible from the AFC data and, depending on the fare structure and the AFC system, one or more 
of the following may have to be inferred from the data: trip origin, trip destinations, and transfers between 
trips [82].  

For vehicle-based AFC systems (e.g., London buses) that do not store vehicle locations — typically, in 
networks with a flat fare structure — both origins and destinations must be inferred. Since travellers 
usually pay upfront, the origin can be inferred by linking the AFC and AVL data to obtain the vehicle 
location. To deduce the destination, commonly, proposed methodologies assume that the destination 
location must be close to the boarding location of the subsequent trip. For destination inference in station-
based AFC systems (e.g., New York city subway), either individual trip destinations are inferred using a 
route inference methodology, or only the final location where the traveller leaves the network is deduced. 

Finally, trips with observed or inferred origins and destinations have to be chained together to form 
journeys so that there should not have been any intervening trip-generating activities. Transfer inference 
methodologies are rule-based with the simplest setting an upper limit on the time between alighting and 
boarding, and more complex ones using a combination of temporal, spatial, and other logical conditions. 

                                                                    
6 Parts of this section are based on the working paper: [81]S. Shelat, "A comparison of reliability representations in random ut         
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3.3.1.2 CHOICE SET IDENTIFICATION 

Similar to other studies analysing travel behaviour using AFC data, in this study, the route choice set for 
each origin-destination (OD) pair is identified directly from this set of observed routes. For this method, the 
AFC data must cover the entire network over a reasonably long period of time so that most of the routes 
used by travellers are observed. By deriving the choice sets from route observations, the need for 
behavioural assumptions or parameter estimations regarding choice set formation are obviated. Despite 
this important advantage, one drawback of such direct identification is that it may be unable to explain why 
some feasible routes are not selected. 

In public transport networks, route choice is usually intertwined with access and egress stop choice 
because different lines do not necessarily serve the same stops. The influence of not being able to observe 
access and egress stop choice (since the first origin and final destination location is not observed) on route 
choice behaviour can be mitigated by merging stops within reasonable proximity to act as single origins and 
destinations for the route choice analysis. 

For the choice analysis, routes have to be uniquely defined such that travellers can be reasonably expected 
to perceive one route to be different from another. In this study, routes alternatives for an OD pair are 
defined by the sequence of lines boarded and stops traversed. Since the focus here is on evaluating the 
effect of waiting time reliability, transfers at different stops along overlapping lines are not differentiated 
as separate routes.  

Finally, to obtain the OD pairs and associated route alternatives suitable for route choice analysis, the 
following rules are applied: (i) each OD pair must have a minimum number of route alternatives, (ii) each 
OD pair must be observed a certain number of times, and (iii) each route alternative must make up a 
minimum percent of the observations of its OD pair. The first rule ensures that a given choice model can 
analyse trade-offs. The lower limits on the number of observations ensure that there is sufficient 
information to estimate behavioural parameters as well as to eliminate unusual observations that do not 
take place regularly. 

3.3.1.3 ATTRIBUTE ASSIGNMENT 

Once all eligible OD pairs and the associated choice sets are obtained, attribute values for the alternatives 
are assigned. The following attributes are used for the choice analysis: for each leg of the route, its (i) 
mode, (ii) in-vehicle time, and (iii) waiting time (and its components), and for the route alternative as a 
whole, its (iv) path size factor and the (v) number of routes.  

The first and last attributes, mode per leg and number of transfers, are already known from route 
definition. The mode per leg is used to understand how travel time components are weighed for different 
modes by travellers. The number of transfers is used to evaluate the transfer penalty — the additional 
disutility beyond the extra waiting time. 

The travel time attributes may be planned, that is, based on the schedule; or actual, that is, based on the 
executed operations. Typically, these attributes may be obtained from the GTFS and AVL datasets, 
respectively. Since the focus here is on waiting time reliability, only planned in-vehicle times are used 
whereas for waiting times, both planned and actual values are obtained. Waiting times are recorded as the 
time difference between the arrival of a line at a stop and the departure of another line either from the 
same stop or from another within a reasonable walking distance. This is done for all stop and line 
combinations, separately for planned and actual trips. 

In station-based AFC systems, the travel time attributes described above can be obtained for the first 
instance of each route alternative after the arrival of the traveller at the first stop. However, since the 
arrival time of travellers at origin stops is not known in vehicle-based systems, route alternatives cannot be 
assigned trip-specific attributes. Instead, statistical measures are used, and to account for the fact that 
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travel time attributes might vary over time, a separate indicator is calculated for each pre-specified time 
period (e.g., weekdays 0900h–1000h). 

For in-vehicle times only the average over each time period is used whereas for waiting times, a centrality 
indicator is calculated for both planned and actual trips and a dispersion indicator is calculated for the 
latter. The difference between the averages of the planned and actual waiting times (average actual minus 
average planned) describes the regular deviation from schedule and the spread represents the level of 
irregularity in the system. In this study, the median is used as the centrality indicator and the spread is 
described by the reliability buffer time (RBT) which is given as the difference between the 95th and 50th 
percentile values and is normalized by the median. 

When arrival times of travellers are unknown, an arrival process has to be assumed. Based on this process, 
the expected waiting times at the origin stop can be calculated as fractions of the respective waiting time 
indicators recorded above. On the other hand, waiting times while transferring are fully observed and equal 
to the full value of the respective records. It should be noted that, to avoid endogeneity issue in the choice 
estimation, the route definition does not make any behavioural assumptions regarding which lines 
travellers perceive to be common. Therefore, there are no common lines with a reduced waiting time. 

Finally, to account for overlap between route alternatives, the path size factor for each route is calculated. 
The travel time attributes calculated above also define which route alternatives are available for each OD 
pair at different time periods. Here, the amount of overlap between two routes is given by the number of 
shared links. If route k of an OD pair covers 𝑙𝑙 ∈ 𝐿𝐿k L-space network links, and the number of alternatives for 
this OD using a link 𝑙𝑙 is 𝑛𝑛𝑙𝑙, then the route’s path size factor, 𝑝𝑝n, is given by equation (3.10). Since the factor 
itself may be quite small, its natural logarithm is used in the choice model. 

 𝑝𝑝k = ∑ 1
𝑛𝑛𝑙𝑙𝑙𝑙∈𝐿𝐿k  (3.10) 

3.3.1.4 CHOICE MODELS ESTIMATION 

The effect of waiting time reliability on route choice behaviour is assessed under the conventional utility 
maximisation paradigm. Three multinomial logit (MNL) models are estimated, each accounting for more 
information on waiting time: (i) only planned waiting times, (ii) plus regular deviations, and (iii) plus level of 
irregularity. In the most generic form of the models, all attributes associated with separate legs of the route 
are mode-specific. 

Equations (3.11–3.13) describe the structural part of the three MNL models. Attributes — number of 
transfers, path size factor, mode, in-vehicle time, and waiting times at origin and transfer stops — are given 
by 𝑛𝑛trans, 𝑝𝑝, 𝑚𝑚, 𝑡𝑡ivt, 𝑡𝑡owt, and 𝑡𝑡twt; and their respective coefficients by 𝛽𝛽. Subscripts describe whether a 
variable refers to the planned values, regular deviations from the planned values (median actual minus 
median planned), or the level of irregularity (RBT of the actual values) and are denoted by 0, d, and r, 
respectively. 

 

 𝑉𝑉1 = 𝛽𝛽trans ∙ 𝑛𝑛trans + 𝛽𝛽ps ∙ 𝑝𝑝 

 +∑ 𝛽𝛽0,𝑚𝑚
ivt ∙ 𝑡𝑡0,𝑚𝑚

ivt + 𝛽𝛽0,𝑚𝑚
owt ∙ 𝑡𝑡0,𝑚𝑚

owt + 𝛽𝛽0,𝑚𝑚
twt ∙ 𝑡𝑡0,𝑚𝑚

twt
𝑚𝑚∈M  (3.11) 

 

 𝑉𝑉2 = 𝛽𝛽trans ∙ 𝑛𝑛trans + 𝛽𝛽ps ∙ 𝑝𝑝 

 +∑ 𝛽𝛽0,𝑚𝑚
ivt ∙ 𝑡𝑡0,𝑚𝑚

ivt + 𝛽𝛽0,𝑚𝑚
owt ∙ 𝑡𝑡0,𝑚𝑚

owt + 𝛽𝛽0,𝑚𝑚
twt ∙ 𝑡𝑡0,𝑚𝑚

twt
𝑚𝑚∈M  

 +∑ 𝛽𝛽d,𝑚𝑚
owt ∙ 𝑡𝑡d,𝑚𝑚

owt + 𝛽𝛽d,𝑚𝑚
twt ∙ 𝑡𝑡d,𝑚𝑚

twt
𝑚𝑚∈M  (3.12) 
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 𝑉𝑉3 = 𝛽𝛽trans ∙ 𝑛𝑛trans + 𝛽𝛽ps ∙ 𝑝𝑝 

 +∑ 𝛽𝛽0,𝑚𝑚
ivt ∙ 𝑡𝑡0,𝑚𝑚

ivt + 𝛽𝛽0,𝑚𝑚
owt ∙ 𝑡𝑡0,𝑚𝑚

owt + 𝛽𝛽0,𝑚𝑚
twt ∙ 𝑡𝑡0,𝑚𝑚

twt
𝑚𝑚∈M  

 +∑ 𝛽𝛽d,𝑚𝑚
owt ∙ 𝑡𝑡d,𝑚𝑚

owt + 𝛽𝛽d,𝑚𝑚
twt ∙ 𝑡𝑡d,𝑚𝑚

twt
𝑚𝑚∈M  

 +∑ 𝛽𝛽r,𝑚𝑚
owt ∙ 𝑡𝑡r,𝑚𝑚

owt + 𝛽𝛽r,𝑚𝑚
twt ∙ 𝑡𝑡r,𝑚𝑚

twt
𝑚𝑚∈M  (3.13) 

 

The MNL models are estimated using PandasBiogeme [83]. 

3.3.2 CASE STUDY: THE HAGUE TRAM & BUS NETWORK 

The methodology described above is applied to the public transport system of The Hague, the third largest 
city in the Netherlands. About 90% [84] of the trips on these lines are paid using the national public 
transport card, OV-chipkaart. Furthermore, the operator also stores vehicle location data making this 
system suitable to analyse the impact of waiting time reliability on travellers’ route choice behaviour.  

3.3.2.1 NETWORK DESCRIPTION 

As mentioned previously, the public transportation system in The Hague is comprised of 12 tram lines and 8 
bus lines. While the bus lines are mainly concentrated in the city, the tram lines extend to suburban regions 
such as Zoetermeer, as well as the neighbouring cities of Rijswijk and Delft.  

 

Waiting time information 

Since this study focuses on waiting time reliability, it is important to analyse the route choice behaviour of 
travellers in the context of information available to them. In The Hague, the schedule of departing lines is 
posted at all tram and bus stops. At most of these stops, real-time information is also available — at many 
tram stops (which may also be used by buses) countdown times for the next few vehicles are prominently 
displayed on a signboard while at other stops the expected arrival time of the next vehicle is displayed on a 
smaller machine. For those using mobile internet, real-time information is always available through the web 
or using travel planner applications. 

 

AFC System 

The tram and bus networks in The Hague use a vehicle-based AFC system and have a distance-based fare 
structure that requires travellers paying with smart cards to check-in as well as check-out when boarding 
and alighting, respectively. Thus, the AFC system collects data on the time and location of both boarding 
and alighting. Furthermore, from the identity of the vehicle boarded, the public transport line used is also 
stored. 

3.3.2.2 AVAILABLE DATA AND PREPARATION 

Available data 

AFC data in the Netherlands is owned by the associated public transport operator. For this study, the 
operator of the tram and bus networks in The Hague provided AFC data from March 2015 without unique 
smart card identifiers but with inferred journeys. Each journey consists of one or more trips and information 
on the boarding time, stop, and line for each trip is available. To obtain journeys from the raw data, the 
operator applies a time-based transfer inference method wherein two trips with the same smart card data 
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are included in one journey if the boarding time of the second trip is within 35 minutes of the alighting time 
of the first. 

In the Netherlands, public transport operators are required to publish their AVL data. However, since the 
AFC dataset used here is from some time ago, the operator also made available the historical AVL dataset 
from the same time period. The AVL data published by the operator in The Hague contains both the actual 
and planned arrival and departure times of vehicles at their respective stops. Since the planned times were 
already available in the AVL dataset, GTFS data was not needed for this case study. 

 

Preparation 

Based on the data stored from the AFC system, as required by the methodology in section 3.3.1, complete 
journeys can already be observed. However, since time-based transfer inference algorithms tend to over-
estimate the number of transfers [80], another inference algorithm is applied that checks if the trips in each 
journey inferred by the operator are indeed linked. 

The transfer inference algorithm applies one spatial and one temporal rule [82]. The spatial rule ensures 
that the alighting stop of one trip and the boarding stop of the next are within 400 Euclidean metres of one 
another. This places an upper bound on the distance travellers will walk to transfer. The temporal rule 
checks whether, after alighting, the first plausible service of the line used in the next trip is boarded. The 
idea is that if travellers transfer to the first plausible service of the next line they use, they are unlikely to 
perform a trip-generating activity. If the boarding stop is the same as the alighting stop of the previous trip, 
then the first plausible service is the same as the first service. If the two stops are different then it is the 
first service after adding the time required by most people to walk between the two stations. For this a 
walking speed of 0.66 m/s (2.5 percentile of the population) is used and all distances are assumed to be 
Euclidean. The parameter values used here are obtained from [80]. 

It should be noted that journeys containing transfer between the same lines are not removed if they pass 
the above temporal criterion. This is done to accommodate travellers affected by planned and unplanned 
short-turning, stop-skipping or dead-heading [80]. This is especially important for The Hague since certain 
public transport lines here are short-turned on a planned basis although the shortened versions are not 
marked as such. Since travellers do not have information upfront regarding which services are shortened 
and thus did not include this in their route choice, wherever the temporal criterion is passed for such 
transfers, the trips involved are merged into one. 

Overall, the re-inference reduced the number of journeys with at least one transfer from 18.7% of all 
journeys in the dataset provided by the operator to 10.8%. Surprisingly, although the same system is studied 
in [80], the percentages found in that study are higher in both, pre- (32%) and post-inference (18%). 
However, this difference may be because: (i) they report results for AFC data over a selection of lines and 
times more suitable for their analysis and (ii) they do not merge the trips between which transfers to the 
same line occur. 

3.3.2.3 WAITING TIME STATISTICS 

To assign travel time attributes, in-vehicle times and headways, statistical indicators are calculated per hour 
per day of week. It is reasonable to expect that attribute values within each time period will be similar and 
will not be different simply on account of the time. Since waiting times at origins is not recorded with the 
AFC system used in The Hague, we assume uniform arrival of passengers to calculate the waiting time at 
origin. Transfer waiting time can be obtained from observations of traveller interactions with the AFC 
system since they are expected to check-in and out of every vehicle. Figure 3.14 and Figure 3.15 show some 
statistics of the waiting times at the origin and at transfers. We can see from Figure 3.14 that the average 
deviation of actual waiting times from the planned values is negligible but there is significant dispersion. For 
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weekdays, the dispersion is highest in the morning and evening peak hours presumably due to disturbances 
caused by the higher number of travellers on the public transport network and heavier road traffic. 

 

 

Figure 3.14: Deviation (median difference) and dispersion (non-normalized reliability buffer time) of actual 
headways over different time periods 

 

  

Figure 3.15: Planned (left) and actual (right) headways at origins and plausible times for transfers at 
Thursdays 0800h-0900h 

3.3.2.4 ANALYSIS & DISCUSSION 

For our analysis we focus on route choice behaviour during the morning peak hours (07:00-09:00) during 
weekdays. Some days where either data is not available or there are significant disruptions are removed 
from the analysis. For an OD pair to be suitable for analysis, we require that there are at least 100 trips 
between this OD pair and that it have at least two unique routes each of which is used at least 0.1% of the 
time. After running these requirements iteratively, we are left with 62,657 trips suitable for choice analysis.  

The results of the three choice models presented in section 3.3.1.4 are shown in Table 3.7. To arrive at the 
final models we remove insignificant parameters one-by-one. It can be seen from the formulations of the 
model equations (3.11-3.13) that each model is more complex than the previous. Using the log-likelihood 
ratio test we find that the more complicated models are justifiable and provide a significantly (p<0.001) 
better model fit. When only planned values are used to predict choice, the number of transfers has an 
unexpectedly large penalty (~11 minutes of extra in-vehicle time) while waiting time is weighted quite low. 
On incorporating deviations in the model, we see that the transfer penalty has reduced and although the 
effect of origin waiting time is about the same, transfer waiting times comes up to the expected range (1-2 
times in-vehicle time). Waiting time deviations are weighted more for transfers but slightly less than the 
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respective planned values. This also holds true for the final model where transfer waiting time is weighted 
almost 2 times in-vehicle time. Transfer penalty is further reduced to about 7 minutes of in-vehicle time. 
Origin waiting time (planned and deviations) remains similar to values in the previous models. Moreover, 
for origin waiting time the effect of dispersion seems to be in the wrong direction. 

The low weights for origin waiting time can be explained by the fact that much of this is often under the 
passengers’ control. Since, departure times are often known, especially by regular travellers they can make 
a departure time choice that would reduce their origin waiting time. This behaviour would not be captured 
here since we assume uniform arrivals of passengers. Thus, since origin waiting time can be controlled up to 
a large extent, it has a comparatively lower weight. 

Each minute of planned transfer waiting times is equivalent to approximately two in-vehicle minutes. 
Further, deviations are weighted almost similarly. In fact, a model that used actual waiting time values 
(rather than the planned values + deviations) did just as well in terms of the final log-likelihood and yet had 
one parameter less. This indicates that people do not seem to use planned waiting time for their decision 
but already take into consideration average deviations. Furthermore, a significant effect of the dispersion 
of waiting times is also observed – every minute increase in the difference between the 95th percentile and 
median waiting time is considered as an extra 3/4th of an in-vehicle minute. 

 

Table 3.7: Route choice model estimations with different representations of reliability 

Model MNL1  
(planned values) 

MNL2 
(planned values +  

deviations) 

MNL3 
(planned values +  

deviations + dispersion) 

Initial LL -51106.15 -51106.15 -51106.15 

Final LL -45916.97 -45826.73 -45793.5 

Adjusted ρ2  0.101 0.103 0.104 

 Value p 𝜷𝜷/𝜷𝜷𝟎𝟎𝐢𝐢𝐢𝐢𝐢𝐢 Value p 𝜷𝜷/𝜷𝜷𝟎𝟎𝐢𝐢𝐢𝐢𝐢𝐢 Value p 𝜷𝜷/𝜷𝜷𝟎𝟎𝐢𝐢𝐢𝐢𝐢𝐢 

𝜷𝜷𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 -2.49 0.00 11.27 -2.13 0.00 9.91 -1.48 0.00 6.82 

𝜷𝜷𝟎𝟎𝐢𝐢𝐢𝐢𝐢𝐢 -0.221 0.00 1 -0.215 0.00 1 -217 0.00 1 

𝜷𝜷𝟎𝟎𝐨𝐨𝐨𝐨𝐨𝐨 -0.18 0.00 0.81 -0.181 0.00 0.84 -0.167 0.00 0.77 

𝜷𝜷𝟎𝟎𝐭𝐭𝐭𝐭𝐭𝐭 -0.212 0.00 0.95 -0.313 0.00 1.46 -0.424 0.00 1.95 

𝜷𝜷𝐝𝐝𝐨𝐨𝐨𝐨𝐨𝐨    -0.218 0.00 1.01 -0.201 0.00 0.93 

𝜷𝜷𝐝𝐝𝐭𝐭𝐭𝐭𝐭𝐭    -0.267 0.00 1.24 -0.397 0.00 1.82 

𝜷𝜷𝐫𝐫𝐨𝐨𝐨𝐨𝐨𝐨       0.196 0.00 -0.90 

𝜷𝜷𝐫𝐫𝐭𝐭𝐭𝐭𝐭𝐭       -0.161 0.00 0.74 

 

3.3.3 SUMMARY 

Having proposed a methodology to identify route choice sets in the previous section, in this section we 
outlined a generic methodology to estimate route choice models from revealed preference data sources. 
Further, we established that it is important to include information on both deviation from schedule and 
dispersion of waiting times in the choice models. As is common in revealed preference studies but in 
contradiction with the model presented in section 3.1, here we study choices as if they were made under 
risk, that is, using known probabilities of different outcomes. Bridging this contradiction, in a working paper 
Shelat, et al. [85] use revealed preferences to study subjective beliefs regarding uncertainty. Several trips in 
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line with the choice situation proposed in section 3.1 and suitable for analysis are found in the urban public 
transport network of Amsterdam. 
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4 ACTIVITY MODELLING 
This section serves as the connective link between the activity prediction mechanism implemented within 
WP2 and the recommendation system implemented in WP3. In particular, herein the flow of information 
among specific modules implemented in the aforementioned WPs is described. More specifically, in the 
activity prediction mechanism described in WP2 includes the Activity Recognition and Activity Prediction 
module. The Activity Prediction module aims at predicting the type of the users’ anticipated activity. 
Furthermore, the Activity Recognition module aims at recognizing the activity type described in the 
provided tweet’s text provided via the Twitter data collector, described in D2.2. In WP3, a recommendation 
system has been implemented, whose objective is to provide personalized recommendations about places 
of interests (POI) that the users of the My-TRAC application could visit.  

The evaluation of each of the utilized modules is presented in: 

1) Activity Prediction module   Deliverable D2.2 “Model for analysing user’s trip purpose 
(activities)”  

2) Activity Recognition module  Deliverable D2.2 “Model for analysing user’s trip purpose 
(activities)” 

3) Recommendation system     Deliverable D3.3 “Definition and elaboration of user-service 
algorithm” 

It needs to be highlighted that no new algorithms are introduced at this stage; as such, no evaluation of 
each one of the above submodules is presented here. For more information about their evaluation, the 
reader should be referred to the corresponding deliverables (i.e. D2.2, D3.3). 

The technical contribution of this section lies in the fact that it provides a formal definition of the 
connection among these modules and the flow of information among them. The connection among the 
Activity Prediction module, Activity Recognition module and the Recommendation system is presented in 
Figure 4.1. The main concept is that through My-TRAC application users will be able to plan their next trip 
and receive personalized recommendations, from the recommendation module, for places of interest that 
they could visit. The input parameters of the recommendation system are: 

• Ratings provided by user for several POI 
• Information about the POI stored on the MySQL database 
• Destination of the user’s trip 
• Date of the planned trip 
• Type of the User’s next activity predicted  

Information about the ratings a user has provided, the POI and the user’s activity profile are stored in the 
data storage system of the My-TRAC Platform. The destination of the user’s trip is retrieved from the My-
TRAC application and will be used to filter the places recommended based on their coordinates, aiming to 
provide recommendations for places that are near the user’s destination. More information is provided in 
below, in the recommendation system’s description. User’s next activity predicted is the result of the 
Activity prediction module, and refers to the predicted type of activity that a user will perform in the next 
time interval.  

The output of the recommendation system is a list with the top M places that the user could visit according 
to their next activity predicted and the destination of their trip. 

For predicting the type of the user’s next activity, the Activity Prediction module uses as input the user’s 
activity profile. User’s activity profile includes the sequences of activities that a user has performed daily, 
the time that each activity has started, alongside with several user’s demographic characteristics (i.e. 
gender, age, occupation, marital status), as it is described in D2.2 section 3.2. The activity types included in 
the sequences of daily user activities are provided either by social media by receiving user’s tweet’s posted 
via the Twitter data collector and recognized from the Activity Recognition mechanism, or from a trained 
model via Activity Prediction module. More detailed information about the algorithms used in each module 
is provided below. 
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Figure 4.1: Flow of information implemented within WP2 and WP3. Activity Prediction and Activity Recognition modules implemented within WP2 are used 

periodically to create the sequences of user’s daily activity types, used to form the user’s activity profile. User’s activity profile is provided as input for the Activity 
Prediction module, aiming at providing personalized predictions of the user’s anticipated activity type. When a user plans a trip from My-TRAC application, the 

recommendation system is used to provide recommendations about several places of interest that a user could visit based the user’s anticipated activity provided 
via the Activity Prediction module and the information retrieved by the My-TRAC application regarding the destination of the trip planned. 
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Each module will be separately described in the sub-sections, including a detailed description of the 
attributes used as input and their output. The input attributes described are based on the data model 
available at https://github.com/My-TRAC/data-model. From this data model only the following items are 
used herein: 

Table 4.1: Data items used 

Selected Data Item Reason for selection / Relevance 

Users 

Demographic characteristics of the user included in this 
data item, are taken into consideration for the 
prediction of the user’s next activity by the Activity 
Prediction module and also by the Recommendation 
system. 

Activity 

Information about the activities performed by a user at 
a certain time are forming a sequence and correspond 
to the input and output to the Activity Prediction 
system.  

POI 

This data item refers to the elements that describe a 
place of interest (e.g. name, coordinates, etc.). That 
information is provided as input to the recommendation 
system, where the list of places will be filtered based on 
the distance between their address and the user’s 
destination; aiming for the recommendation system to 
propose places nearby the user’s destination. 

User_chooses_route 

From the My-TRAC application, when a user plans a trip 
the information regarding this trip are depicted in the 
attributes included in this data item. 

This data item is used to retrieve information about the 
user’s destination of a trip, in order for the 
recommendation system to use this destination and 
filter the list of the recommendations accordingly. 
Places with coordinates nearby the destination of the 
user’s trip will be proposed.  

User_evaluates_activity 

This data item provides the information regarding the 
places that a user evaluates and the ratings provided for 
each place. This information are a crucial input for the 
recommendation system. 

 

 

 

 

 

 

 

 

 

 

 

https://github.com/My-TRAC/data-model
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4.1 ACTIVITY PREDICTION MODULE 

The prediction mechanism, included in the Activity Prediction module, aims at predicting the user’s next 
activity based on a set of parameters described in Table 4.2. User’s demographic attributes and the 
sequences of activities performed, form the activity profile of each user.  

Table 4.2: Input attributes needed by the Activity Prediction system. 

Description Data item Data item’s attributes Retrieved by 

User‘s 
demographic 

attributes 
Users 

user_id 

My-TRAC  application 

user_gender 

user_birthday 

user_occupation 

user_marital_status 

Sequences of 
activities a user has 
performed during 

the day 

Activity 
activity_type 

MySQL DB 
activity_duration 

 Month of prediction 

 Day of prediction 

 

Except from the parameters presented in Table 4.2, parameters from the system are included also as input. 
Those parameters refer to the day and month of prediction. That information will be retrieved from My-
TRAC application.  

For predicting user’s activities for a certain time interval, a Long Short-Term Memory network (LSTM), 
which is a type of Recursive Neural Network (RNN), has been implemented for the prediction mechanism. 
Based on the assumption that the previous element in a sequence will affect the future elements of this 
sequence, a method supporting sequential processing of the user’s daily activities alongside with the use of 
user attributes (i.e gender, age, occupation, marital status) should be followed. Due to the nature of the 
data needed and the fact that we need to keep past sequences of user actions for training the models and 
making accurate predictions, RNN-LSTM should be selected because they can capture long-range temporal 
dependencies. The RNN-LSTM networks are capable of learning long-term dependencies of data, by 
incorporating memory cells that make the network capture a long range of past sequences over a long 
period of activity patterns. This network is composed of one layer of 20 units and a softmax activation 
function is adopted at the output layer, aiming to convert the continuous type of output into discrete class 
of output. The RNN-LSTM networks have been evaluated and compared with other methods, such as the 
Markov model, and the evaluation results are available in D2.2 section 3.3. 

The output of this module is the user’s next activity type, alongside with a timestamp (Table 4.3). The 
timestamp refers to the time the activity will start (activity_start attribute). 

Table 4.3: Output attributes of the Activity Prediction module. 

Description Data items Data item’s attributes Retrieved by 

User’s next activity Activity 
activity_start 

Activity Prediction module 
activity_type 

 

The Activity Prediction module is used in two cases. In the first case, this module is used periodically (every 
60 minutes) to predict the type of the user’s next activity and store it in the data storage system of the My-
TRAC Platform (MySQL Database), using a trained model. Those predicted activities form the sequences of 
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daily activities of the user. The trained model is based on the ATUS dataset, a description of which is 
available in D2.2, section 3.3.2. In the second case, the prediction mechanism included is used upon request 
from the recommendation system, to provide the type of future activity that a user will perform. 

4.2 ACTIVITY RECOGNITION MODULE AND TWITTER DATA COLLECTOR 

The Activity Recognition module is used to correct the predicted activities stored on the data storage 
system of the My-TRAC Platform, based on the recognised activities provided through Twitter (Figure 4.2). 
In this way, the sequence of activities used for training the model of the Activity Prediction module will 
include not only predicted but also realistic information from real user’s feedback, leading to personalized 
predictions. The Activity Recognition module will periodically receive user’s tweets, by using a Twitter data 
collector application described in D2.2 and process them aiming at recognising any activity described in the 
tweet’s text. 

 

Figure 4.2: Creation of sequences of activities included in a user’s activity profile based on the input 
provided by both Activity Prediction and Activity Recognition mechanism. Example of the update of the 

sequence of activities is provided.  

 

The downloaded information from the Twitter data collector, which will be used as input in the Activity 
Recognition module, have the format presented in Table 4.4. 

Table 4.4: Activity Recognition input dataset format 

<UserID_1>, <tweetText>, <Timestamp> 

<UserID_2>, <tweetText>, <Timestamp> 

<UserID_3>, <tweetText>, <Timestamp> 

… 
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For the processing of the tweet’s text, several Natural Language Processing (NLP) techniques are used, 
described in detail in D2.2 section 3.4.2.1. For the classification of the text to one of the types of the My-
TRAC predicted Sub- attributes described in Annex I, an algorithm that takes into consideration multiple 
classifiers, a neural network and a Probabilistic algorithm and fuses their results is used. Evaluation results 
of this module and more information about each classification used are available in D2.2 section 3.4.2. 

The output of this module includes the tweet’s timestamp and the recognized activity’s type (Table 4.5). 
The recognised type of activity will be stored in the data storage system of the My-TRAC Platform, based on 
user Id, aiming to update any predicted activity corresponding to the time where the timestamp refers to. 
For example, if the activity stored in the data storage system of the My-TRAC Platform for a specific time 
interval is “work” and the recognised activity type for this time interval is “eating and drinking”, then the 
stored activity will be updated and include the recognised activity.  

Table 4.5: Output attributes of the Activity Recognition module. 

Description Data item Data item’s attributes Retrieved by 

User’s recognised 
activity Activity 

activity_start Activity Recognition 
module activity_type 

 

4.3 RECOMMENDATION SYSTEM 

The recommendation system implemented is based on a Collaborative Filtering Neural Network (CFNN) 
[86], following the model-based approach with the use of neural networks. The method used has been 
evaluated among other baseline algorithms and the evaluation results are described in D3.3. The 
implemented CFNN network has been evaluated with multiple architectures and by using several user 
demographic attributes as input. From the evaluation results, it has been concluded that the use of user 
demographic attributes as input on the implemented method and with the architecture used, the results of 
the implemented algorithm are improved, in comparison with the case where no attributes were used as 
input. More information and results are provided in D3.3, in section 3. 

The input attributes (Table 4.6) of the recommendation system are the ratings provided by the users for 
several POIs, demographic user attributes (i.e. gender, age, occupation and marital status), multiple 
information about the POIs (e.g. the type and name of the place) and the next activity of the user predicted 
by the Activity Prediction module. When a recommendation is requested from the application, the Activity 
Prediction module is also used in order to provide the type of the user’s anticipated activity, used further as 
input to the recommendation module.   
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Table 4.6: Input attributes needed by the recommendation system. 

Description Data item Data item’s attributes Retrieved by 
Ratings provided 

by user for 
several POIs 

User_evaluates_activity 
poi_id 

My-TRAC  application 

rating 

User‘s 
demographic 

attributes 
User 

user_gender 

user_age 

user_occupation 

Information 
about the POIs 
stored on the 

database 

POI 

poi_id 

MySQL DB 
poi_type 

poi_lat 

poi_lon 

The destination of 
the user’s trip User_chooses_route 

to_lon 
My-TRAC application 

to_lat 

User‘s next 
activity Activity activity_type MySQL DB 

System 
parameters User_chooses_route Date of trip planning My-TRAC application 

 

The CFNN implemented includes an input layer where all parameters provided as input are inserted. Above 
the input layer is the Embedding layer, which is a fully connected layer that projects the sparse 
representation to a dense vector. The obtained user embedding can be seen as the latent vector for user  in 
the context of latent factor model. The embeddings (i.e. user vector, item vector) are inserted into Dot 
Factorize module where Matrix Factorization (MF) is performed. The results of the MF are concatenated 
and inserted into the 1st Multi-Layer Perceptron (MLP) layer, which is a class of feed forward artificial neural 
network. The MLP uses backpropagation techniques for training and a non-linear activation function for 
each neuron. Both the number of hidden layers and the number of neurons have resulted in empirically. 
Depending on which activation function is used in each neuron, a real value in the range [0, 1] will be 
received. In the present case, Exponential Linear Unit (ELU). The selection of ELU activation function 
resulted after executing several tests and evaluations among other functions. The output of the 1st MLP 
layer is concatenated with the output of the Dot Factorize module, aiming to form a vector which will be 
further used as input on the 2nd MLP layer. The output of the 2nd MLP layer is the predicted score for each 
user-item pair, stored on a model in the central database aiming to be used as input in the testing phase. 
More information regarding the architecture of this network are provided in D3.3, section 3. 

For providing recommendations on a specific user (called test user), the implemented recommendation 
system retrieves as input the historical data regarding the ratings a user has provided for several places. If 
the test user has adequate historical data, then the trained model from the CFNN module is used, alongside 
with the information received from the user in order to predict the rating that this user could give on a 
certain list of items. The list with the predicted ratings is then sorted based on the rating value and the M 
items with the highest predicted score are recommended to the user. However, in cases where no data 
exist, or the number of the ratings included in the historical dataset are below a certain level, then the N 
most similar users with the test user are received. The system uses the ratings of the N most similar users 
and for the missing rating, it predicts them. 

After filling the missing values, the average value of the rating of all users is considered as the possible 
ratings of the user. Based on these the system recommend the items with the best rating for the user. 

The output of this system is a list of the top M POIs based on the predicted score calculated by the system. 
The recommended POIs are highly connected with the user’s next activity predicted, thus the types of each 
place will be associated with the activity types provided by the Activity Prediction module. In this way, the 
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recommended places will be filtered based on the predicted activity type provided by the Activity 
Prediction module, such as if the next activity of the user is “eating and drinking”, the recommendation 
system will provide a list of restaurants, bars, etc. Alongside, the destination of the trip planned by the user 
will be associated with the address of the places, thus the recommendation system will suggest places that 
are nearby the trip’s destination. 
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5 DATA REQUIREMENTS 
The My-TRAC application aims at assisting travellers in planning their daily trips and thus, understanding 
travel related choices is vital for its success. In this context, choice models were developed in order to 
accurately predict users’ travel behaviour and provide valuable travel related information to the user. These 
models, developed using stated and revealed preferences, describe how the characteristics of decision-
makers and of the available alternatives affect the choice behaviour. In order to model travellers’ choices, 
four categories of data are used: (1) personal characteristics, including socio-demographics, mobility 
characteristics, and other qualitative factors (e.g., regret, tolerance); (2) trip contexts, including trip 
purpose and other factors describing conditions under which the trip is made; (3) attributes of available 
(and considered) alternatives; and (4) user feedback in the form of actual choices made by the travellers. 
The minimum data required for the development and implementation of choice models that describe and 
subsequently predict behaviours, as they emerged from the analysis performed in this task, are described in 
this section. Note that the data requirements of activity modelling are already described in D2.2 and D3.3 
and therefore not discussed here. 

5.1 DATA SOURCES AND ACQUISITION 

Data requirements refer to the data that are needed in order for My-TRAC application to deploy the models 
developed within the framework of Task 2.3. Data presented in Table 5.1 are required for the My-TRAC 
application to be able to perform accurate predictions concerning travel mode and time of departure 
choice decisions for each trip. Data specifications are described based on the following elements: 
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Table 5.1 Data requirements description and specifications 

Variable Description Measurement unit Time interval Data acquisition 

Travel Cost Travel cost of the trip € Dynamic System/Alternative attribute 

Travel Time Total travel time of the trip minutes Dynamic System/Alternative attribute 

In-vehicle Time Time spent inside PT vehicle minutes Dynamic System/Alternative attribute 

Waiting Time Time spent waiting for PT vehicle minutes Dynamic System/Alternative attribute 

Walking Time Estimated average walking time of the trip minutes Dynamic System/Alternative attribute 

Level of comfort The property of travel mode to offer a convenient and 
restful trip. It can also be extracted from the level of 
crowdedness in each vehicle. 

2 levels (High/Low) Dynamic System/Alternative attribute 

Frequency The time distance between two successive vehicles (for 
public transport) 

minutes Dynamic Operator/Alternative attribute 

Fare discount Specific time period of the day where a fare discount 
exists 

Percentage of discount Static Operator/Alternative attribute 

Trip purpose The purpose of each trip 2 levels (work/education/ 
leisure/personal) 

- Task 2.2 (alternatively user 
input) 

Age The age of the traveller 6 categories Static (it changes 
periodically) 

Initial Questionnaire 
(with the option to be changed) 

Gender The gender of the traveller 2 categories 
(Male/Female) 

Static Initial Questionnaire 

Occupation The occupation of the traveller 6 categories Static (it may 
change) 

Initial Questionnaire 
(with the option to be changed) 

Importance of arriving 
on time 

The importance of arriving on time when travelling for 
work purposes 

3-point scale Static Initial Questionnaire 

Number of trips by Car The number of trips performed during a week by car integer Dynamic Tracked through the application 
(or stated by the user) 

Number of trips by PT The number of trips performed during a week by Public 
Transport 

integer Dynamic Tracked through the application 
(or stated by the user) 

Level of Tolerance The general attitude of the user in relation to the 
occurrence of unexpected events. Expressed as a level 
of tolerance. 

5-point scale Static Initial Questionnaire 
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Probability of Random 
Event Occurrence 

The probability of the occurrence of any random event 
during every day trip being assigned from the user. 

% percentage Static Initial Questionnaire 

Regret Measurement The level of anticipated regret 7-point scale Static Initial Questionnaire 

Perception of System 
Reliability 

The perceived reliability of PT system 7-point scale Static Initial Questionnaire 

Level of Engagement The level of engagement while waiting for a PT vehicle 7-point scale Static Initial Questionnaire 

Delay effect The perceived reliability of PT system in case of delays 
in the network 

7-point scale Static Initial Questionnaire 

Level of Happiness The level of happiness that someone experiences 
during a trip.  

3-point scale Dynamic User feedback 

Household Size The size of the household Integer >0 Static Initial Questionnaire 

Income The income of the traveller 3 categories Static Initial Questionnaire 

Car availability The number of cars that the person owns or has access 
to 

Integer Static (it may 
change) 

Initial Questionnaire 

Moto availability The number of motorcycles that the person owns or 
has access to 

Integer Static (it may 
change) 

Initial Questionnaire 

Bike availability The number of bicycles that the person owns or has 
access to 

Integer Static (it may 
change) 

Initial Questionnaire 

Selected alternative The alternative selected by the user categorical Dynamic System 
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6 CONCLUSIONS 
In this deliverable, we focussed on understanding behaviour of travellers, which is crucial to providing 
timely, meaningful, and personalized advice on various travel decisions. Since providing travel 
recommendations through a mobile application is one of the most important objectives of My-TRAC, this 
deliverable is critical to the project.  

An analysis of three choice dimensions, (i) travel mode, (ii) departure time, and (iii) route choice was 
presented, which allows us to describe the most important decisions made by travellers before and during 
their trips. The analyses produced a set of baseline population choice models for each dimension which can 
also be re-estimated as more data comes in from the use of the My-TRAC application. The estimated models 
include information about: (i) personal characteristics, including socio-demographics, mobility 
characteristics, and other qualitative factors (e.g., regret, tolerance); (ii) trip contexts, including trip 
purpose and other factors describing conditions under which the trip is made; and (iii) attributes of 
available (and considered) alternatives. We discussed how travellers of different backgrounds and 
personalities behave in different travel situations. These choice models can be further extended for 
personalization and recommendation in subsequent tasks of the project.  

For the analysis, we mainly use stated preferences data collected from three locations where the pilots will 
be conducted, namely, the Netherlands, Greece (Athens), and Portugal (Lisbon). The data was collected 
both online and on-site. However, as more and more passive travel-related data becomes available 
(including from the My-TRAC application), it is likely that revealed preferences will be the main source for 
behaviour analysis in the future. Therefore, in addition to the stated preference experiments, two route 
choice models were also based on revealed preferences from smart card data. 

As noted in D2.1, apart from hard factors, such as minimizing travel time, we need to pay close attention to 
softer factors, such as emotions, attitudes, and perceptions of risk and uncertainty. To this end, for mode 
and departure time, the effect of reported travel happiness on mode and departure time choice is studied. 
For route choice, a choice situation is identified to capture the effect of subjective-beliefs regarding waiting 
time uncertainties. Moreover, the effects of including different waiting time risk measures, such as 
deviation of waiting times from schedule (regular disturbances) and dispersion of waiting time (irregular 
disturbances) are compared. 

For mode choice, hard factors such as travel time, cost, and comfort are considered. Amongst the choices 
offered in the experiment were car, public transport, bicycle (in the Netherlands), and motorcycle (in 
Greece and Portugal). Departure time choice is between depart ‘on time’, ‘early’, or ‘late’, and is only 
modelled for public transport modes, considering travel time, walking time (to station), frequency of 
vehicles, and fare discount (as percentage) as the main alternative attributes. We discussed the effect of 
different attributes in detail, also comparing results across pilot locations and with literature.  

For route choice, three models were presented. In the first model, the focus is on capturing waiting time 
uncertainty that travellers in public transport networks feel. Findings indicated an average preference for 
certainty, with travellers willing to accept between 3 and 10 minutes of extra in-vehicle time to avoid 
uncertainty in waiting time. We further reported the effects of context and personal characteristics on 
beliefs regarding uncertainty for the three countries. Analysing the alternatives considered by decision-
makers is critical to both accurate behaviour modelling as well as presenting application users with 
appropriate options. Therefore, the second model developed a methodology to automatically calibrate the 
composition of route choice sets using the non-compensatory elimination-by-aspects decision rule. In the 
third and final route choice model (also estimated from smart card data), we presented a comparison of 
different representations of risky waiting time in choice models and showed the importance of including 
information on both deviation from schedule and dispersion of waiting times in choice models. 
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Finally, the activity model developed in two other deliverables (D2.2, D3.3), is briefly presented here to align 
with the complete set of user choices. Moreover, the data required for re-estimation of the models (based 
on continuous observations from the My-TRAC application) described in this deliverable using such data are 
also tabulated. 

6.1 FUTURE RESEARCH 

Apart from the practical contribution of producing the baseline population choice models for different 
travel-related choice dimensions, the scientific aspects of this deliverable point a number of different 
avenues: 

• While we assume the choices to be sequential for practical reasons, future research could employ 
simultaneous estimation of different choice dimensions together with the various attitude and 
perception-based attributes considered here. Moreover, as shown models that describe heterogeneity 
in some detail (such as mixed logit and latent class choice models) may also be used for this. We may 
consider such improvements in D2.5. 

• One limitation of stated preferences experiments is that they may not be very conducive in eliciting the 
effects of context variables, since it is very difficult for people to hypothesise about feeling in a 
particular way. Future studies could focus on designing experiments that can make respondents ‘feel’ 
the changes in perception of uncertainty due to contextual variables such as elapsed waiting time and 
delays. Alternatively, given the increasing availability of smart card and vehicle location data for public 
transport networks, subjective beliefs towards uncertainty may be assessed using revealed preferences 
from the proposed choice situation. In a working paper Shelat, et al. [85] use revealed preferences to 
study subjective beliefs regarding uncertainty. Several trips in line with the choice situation proposed in 
section 3.1.2 and suitable for analysis are found in the urban public transport network of Amsterdam. 

• As noted in section 3.1.1, the effects of attitudes and perceptions on travel behaviour are difficult to 
disentangle. However, if this was to be done, we could produce more impactful recommendations and 
policies that specifically target each of these aspects. For instance, if we know that a poor perception 
of system reliability is causing travellers to make decisions that make them less happy, we can 
specifically work on this. 

• While we used elimination-by-aspects as the governing decision rule (because of several advantages) 
for generating route choice sets (section 3.2), it might be the case that different people employ 
different non-compensatory heuristics (e.g., lexicographic, conjunctive/disjunctive). It is interesting to 
study, if there exist a mixture of such rule-users in the population. 

• Only the more common risk representations (deviation, dispersion) are currently used in section 3.3. 
Studies [87, 88] have indicated that there are other important moments of distribution that should be 
included in such a comparison. Including these indicators will be an important aim in further extending 
the mentioned working paper [81]. 
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Appendix A COMPARISON OF TRAVELLERS IN SPAIN AND 

GREECE 
We hereby perform a comparison between the attitudes of travellers in Spain regarding travel related 
choices and travellers in Greece. 

 

Figure 8.1 Mean values of attributes for each travel mode for Greece and Spain [from D2.1] 

As shown in Figure 8.1, travellers using the transportation system of Greece and Spain assess in a similar 
way the travel mode alternatives that are available to them. Based on the results, car and motorcycle are 
assessed as the best travel modes from both samples in terms of availability, flexibility and reliability. 
Moreover, metro is considered as a reliable travel mode from traveller of both the countries. Finally, bus 
and train are not considered as convenient travel modes from neither the samples. 
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Figure 8.2 Average values of the importance of factors on travel mode choice per country [from D2.1] 

Regarding the factors which are taken into account when travel mode alternatives are being assessed for a 
specific trip, the two samples have many similarities. Specifically, trip duration together with travel mode 
availability are the most important factors in the decision-making process. In addition, safety and reliability 
aspects of the mode are being evaluated before the traveller choose between the available travel modes. 
Interestingly, in none of the two countries travel cost appears to be very important when travel alternatives 
are out of question. 

The above revealed similarities allow us to assume that both the transportation systems and the travellers 
in these countries are quite similar. 
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Appendix B MODE AND DEPARTURE TIME CHOICE STATED 

PREFERENCES QUESTIONNAIRE 
All questionnaires were presented in the respective local languages. 

B.1 NETHERLANDS 

 
TRAVEL BEHAVIOR ANALYSIS 

Τhis survey is conducted within the framework of the project My – TRAC (CORDIS ID: 777640) and 
is aimed at identifying the factors that affect travel mode and time of departure choices for everyday 
trips. For the purpose of this research, no personal information is required. Every answer will be 
treated confidentially and abiding to European and local laws and ethics. 

 
MOBILITY PROFILE 

A1. Which is your usual trip purpose?  Work / education  □  Other   □ 
 

A2. How many times per week do you travel for your usual trip purpose? 
 
A3. How often do you use each of the following travel modes for your usual trip 
purpose? 
 Never Rarely 1-2 times per week Daily 
Public Transportation □ □ □ □ 
Car □ □ □ □ 
Bicycle □ □ □ □ 

 
A4. How important is for you to arrive on time in the following cases? 

 
Not 

important at 
all 

Somewhat 
important 

Very 
important 

Work/education trip □ □ □ 
Leisure trip □ □ □ 
Other trip □ □ □ 
 
A5. Describe your work time flexibility:  
Fixed start/end work time □ 
Flexible start/end work time □ 
NA □ 
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A6. Do you have a Public Transport seasonal Pass? Yes □   No □ 
 
A7. How do you feel during your everyday trips? 

Very unhappy□ Unhappy □ Neutral □ Happy □ Very happy  
 

SCENARIOS 

For a hypothetical journey of 10km from at 8:00 am, available modes are car, public transport (train 
and metro) and bicycle. In the following tables, total travel time per mode and costs per mode for the 
particular trip are presented, together with the comfort level. The level of comfort depends on the 
traffic conditions, crowdedness and other events (expected or unexpected) that may affect the 
conditions of the trip. For each of the following scenarios, which alternative mode would you prefer? 
 

 Car PT Bike 
Travel Time (in mins) 35 30 25 

Cost (in euros) 5 2 0 
Comfort High Low Low 
Select    

 

 Car PT Bike 
Travel Time (in mins) 25 30 25 

Cost (in euros) 8 1.4 5 
Comfort High High High 
Select    

 

  
 Car PT Bike 

Travel Time (in mins) 35 25 35 
Cost (in euros) 8 1.4 0 

Comfort Low Low High 
Select    

 

 Car PT Bike 
Travel Time (in mins) 25 45 20 

Cost (in euros) 5 2 5 
Comfort Low High High 
Select    

 

  
 Car PT Bike 

Travel Time (in mins) 15 45 20 
Cost (in euros) 5 1.4 0 

Comfort High Low Low 
Select    

 

 Car PT Bike 
Travel Time (in mins) 15 25 35 

Cost (in euros) 8 2 5 
Comfort Low High High 
Select    

 

For the following scenarios consider that you perform the same trip of 10km by Public Transport 
(metro or train) during the morning peak (6:30 – 9:00). What time would you choose to start your 
trip in each of the below presented scenarios? 

 Early On time Late 
Travel Time (in mins) 30 45 30 

Walking time (in mins) 20 10 20 
Frequency (per mins) 5 3 7 

Fare discount 0% 20% 40% 
Select    

 

 Early On time Late 
Travel Time (in mins) 25 35 25 

Walking time (in mins) 20 20 20 
Frequency (per mins) 3 5 5 

Fare discount 20% 20% 0% 
Select    

 

  
 Early On time Late 

Travel Time (in mins) 30 35 30 
Walking time (in mins) 10 10 10 
Frequency (per mins) 3 3 7 

Fare discount 20% 0% 0% 
Select    

 

 Early On time Late 
Travel Time (in mins) 40 45 25 

Walking time (in mins) 20 20 10 
Frequency (per mins) 3 3 7 

Fare discount 0% 0% 40% 
Select    

 

  
 Early On time Late 

Travel Time (in mins) 25 40 40 
Walking time (in mins) 10 10 10 
Frequency (per mins) 3 5 5 

Fare discount 0% 0% 40% 
Select    

 

 Early On time Late 
Travel Time (in mins) 40 40 40 

Walking time (in mins) 10 20 20 
Frequency (per mins) 5 3 7 

Fare discount 20% 20% 0% 
Select    

 



Deliverable 2.3: Modelling framework 
for analysing users’ choices Page 103 of 121  

 

DEMOGRAPHICS 

C1. Select your gender: 
Female □ 
Male □ 

C2. Select your age group: 
18 – 24 □ 
25 – 34 □ 
35 – 44 □ 
45 – 54 □ 
55 – 64 □ 
≥ 65 □ 

C3. Select your higher education level: 

High school graduate □ 
Bachelor’s degree □ 
Master’s degree □ 
Professional degree □ 
Doctorate degree □ 
None of the above □ 

C4. Select your total annual personal income:  
Low □ 
Medium □ 
High □ 

C5. Select your occupation: 
Public servant □ 
Private employee □ 
Self-employed □ 
Unemployed □ 
Retired □ 
Student □ 

C6. Number of household members (including yourself): ____________ 
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B.2 GREECE & PORTUGAL 

 
TRAVEL BEHAVIOR ANALYSIS 

Τhis survey is conducted within the framework of the project My – TRAC (CORDIS ID: 777640) and 
is aimed at identifying the factors that affect travel mode and time of departure choices for every day 
trips. For the purpose of this research, no personal information is required. Every answer will be 
treated confidentially and abiding to European and local laws and ethics. 

 
MOBILITY PROFILE 

A1. Which is your usual trip purpose?  Work / education  □  Other   □ 
 
A2. How many times per week do you travel for your usual trip purpose? ______ 
 
A3. How often do you use each of the following travel modes for your usual trip 
purpose? 
 Never Rarely 1-2 times per week Daily 
Public Transportation □ □ □ □ 
Car □ □ □ □ 
Motorcycle □ □ □ □ 
 
A4. How important is for you to arrive on time in the following cases? 

 
Not 

important at 
all 

Somewhat 
important 

Very 
important 

Work/education trip □ □ □ 
Leisure trip □ □ □ 
Other trip □ □ □ 
 
A5. Describe your work time flexibility:  
Fixed start/end work time □ 
Flexible start/end work time □ 
NA □ 

A6. Do you have a Public Transport seasonal Pass? Yes □   No □ 

Α6.1 If yes, select its type: 
Combined (more than one operator) □ 
Single (One operator) □  

A7. How do you feel during your everyday trips? 
Very unhappy□ Unhappy □ Neutral □ Happy □ Very happy □ 
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SCENARIOS 
For a hypothetical journey of 10km from at 8:00 am, available modes are car, public transport 
(train and metro) and motorcycle. In the following tables, total travel time per mode and costs 
per mode for the particular trip are presented, together with the comfort level. The level of 
comfort depends on the traffic conditions, crowdedness and other events (expected or 
unexpected) that may affect the conditions of the trip. For each of the following scenarios, 
which alternative mode would you prefer? 
 

 Car PT Moto 
Travel Time (in mins) 50 45 35 

Cost (in euros) 8 1.2 5 
Comfort High High Low 
Select    

 

 Car PT Moto 
Travel Time (in mins) 50 55 40 

Cost (in euros) 5 1.45 3 
Comfort Low High Low 
Select    

 

  
 Car PT Moto 

Travel Time (in mins) 40 45 25 
Cost (in euros) 8 1.45 3 

Comfort Low Low Low 
Select    

 

 Car PT Moto 
Travel Time (in mins) 60 55 25 

Cost (in euros) 8 1.2 5 
Comfort High Low High 
Select    

 

  
 Car PT Moto 

Travel Time (in mins) 60 35 35 
Cost (in euros) 5 1.2 3 

Comfort Low Low High 
Select    

 

 Car PT Moto 
Travel Time (in mins) 40 35 40 

Cost (in euros) 5 1.45 5 
Comfort High High High 
Select    

 

 

For the following scenarios consider that you perform the same trip of 10km by Public Transport 
(metro or train) during the morning peak (6:30 – 9:00). What time would you choose to start your 
trip in each of the below presented scenarios? 

 Early On 
time Late 

Travel Time (in mins) 30 35 50 
Walking time (in mins) 20 10 20 
Frequency (per mins) 8 5 5 

Select    
 

 Early On 
time Late 

Travel Time (in mins) 35 35 40 
Walking time (in mins) 10 20 10 
Frequency (per mins) 8 6 7 

Select    
 

  
 Early On 

time Late 

Travel Time (in mins) 30 45 60 
Walking time (in mins) 10 10 20 
Frequency (per mins) 6 6 7 

Select    
 

 Early On 
time Late 

Travel Time (in mins) 40 45 60 
Walking time (in mins) 10 20 10 
Frequency (per mins) 6 5 5 

Select    
 

  
 Early On 

time Late 

Travel Time (in mins) 35 55 40 
Walking time (in mins) 20 10 20 
Frequency (per mins) 6 6 5 

Select    
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DEMOGRAPHICS 
C1. Select your gender: 
Female □ 
Male □ 

C2. Select your age group: 
18 – 24 □ 
25 – 34 □ 
35 – 44 □ 
45 – 54 □ 
55 – 64 □ 
≥ 65 □ 

C3. Select your higher education level: 

High school graduate □ 
Bachelor’s degree □ 
Master’s degree □ 
Professional degree □ 
Doctorate degree □ 
None of the above □ 

C4. Select your total annual personal income:  
Low □ 
Medium □ 
High □ 

C5. Select your occupation: 
Public servant □ 
Private employee □ 
Self-employed □ 
Unemployed □ 
Retired □ 
Student □ 

C6. Number of household members (including yourself): ____________ 
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Appendix C ROUTE CHOICE STATED PREFERENCES 

QUESTIONNAIRES 
All questionnaires were presented in the respective local languages. In the next page, the questionnaire is 
presented in the format used for offline data collection in Greece and Portugal. In the Netherlands, data 
was only collected online and the choice situations remained the same but were presented as shown in 
Figure 3.4. For a discussion on why different formats were used, see section 3.1.3.2. In the survey the 
respective local public transport network (PTN) names were used: NS (Netherlands), Attiko Metro 
(Greece), Fertagus. MTS (Portugal). 
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Thank you for agreeing to fill in this survey on travel behaviour! 

  

This survey has 4 sections and should take about 10 minutes in 
total. 

  

Project: My-TRAC (CORDIS ID: 777640). No personal information is 
collected. Responses are treated in accordance with European and 
local laws. 

 

Section 1 

In each situation, you have arrived at [a/an PTN] station from which 
there are two trains that can take you to your destination. 

 

These trains are identical except for their scheduled arrival time 
and travel time. 

 

After (potentially) waiting for some time at the station, the first 
train arrives. 

 

You must choose whether you will board the first train or wait for 
the second train.  

 

Please assume all conditions to be the same as your usual experience 
with [PTN]. 
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Example 

You have arrived at the platform at around 10:30AM.  

There are two identical trains (TRN1,TRN2) that can take you to your 
destination. 

Both trains are delayed by 5 minutes from their scheduled arrival 
time. 

 
You have waited for 10 minutes since your arrival at the platform. 

TRN1 has arrived. 

  

 
TRN1 TRN2 

Time remaining 0’00” 4’00” 

Travel time 14 min 8 min 
 

 
Choose what you do: 

 Board TRN1 

 Wait for TRN2 
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Situation 1 

 
You have arrived at the platform at around 10:30AM.  

There are two identical trains (TRN1,TRN2) that can take you to your 
destination. 

Both trains are delayed by 10 minutes from their scheduled arrival 
time. 

 
You have waited for 5 minutes since your arrival at the platform. 

TRN1 has arrived. 

  

 
TRN1 TRN2 

Time remaining 0’00” 4’00” 

Travel time 28 min 8 min 
 

 
Choose what you do: 

 Board TRN1 

 Wait for TRN2 

 
Situation 2 

 
You have arrived at the platform at around 10:30AM.  

There are two identical trains (TRN1,TRN2) that can take you to 
your destination. 

Both trains are delayed by 15 minutes from their scheduled arrival 
time. 

 
You have just arrived at the platform. 

TRN1 has arrived. 

  

 
TRN1 TRN2 

Time remaining 0’00” 10’00” 

Travel time 14 min 8 min 
 

 
Choose what you do: 

 Board TRN1 

 Wait for TRN2 
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Situation 3 

 
You have arrived at the platform at around 10:30AM.  

There are two identical trains (TRN1,TRN2) that can take you to your 
destination. 

Both trains are delayed by 15 minutes from their scheduled arrival 
time. 

 
You have waited for 15 minutes since your arrival at the platform. 

TRN1 has arrived. 

  

 
TRN1 TRN2 

Time remaining 0’00” 4’00” 

Travel time 14 min 4 min 
 

 
Choose what you do: 

 Board TRN1 

 Wait for TRN2 

 
Situation 4 

 
You have arrived at the platform at around 10:30AM.  

There are two identical trains (TRN1,TRN2) that can take you to 
your destination. 

Both trains are delayed by 5 minutes from their scheduled arrival 
time. 

 
You have just arrived at the platform. 

TRN1 has arrived. 

  

 
TRN1 TRN2 

Time remaining 0’00” 4’00” 

Travel time 28 min 4 min 
 

 
Choose what you do: 

 Board TRN1 

 Wait for TRN2 
 

 
 

 



Deliverable 2.3: Modelling framework 
for analysing users’ choices Page 112 of 121  

 

Situation 5 

 
You have arrived at the platform at around 10:30AM.  

There are two identical trains (TRN1,TRN2) that can take you to your 
destination. 

There is no delay on either train. 

 
You have waited for 5 minutes since your arrival at the platform. 

TRN1 has arrived. 

  

 
TRN1 TRN2 

Time remaining 0’00” 10’00” 

Travel time 14 min 4 min 
 

 
Choose what you do: 

 Board TRN1 

 Wait for TRN2 

 
Situation 6 

 
You have arrived at the platform at around 10:30AM.  

There are two identical trains (TRN1,TRN2) that can take you to 
your destination. 

Both trains are delayed by 5 minutes from their scheduled arrival 
time. 

 
You have waited for 15 minutes since your arrival at the platform. 

TRN1 has arrived. 

  

 
TRN1 TRN2 

Time remaining 0’00” 10’00” 

Travel time 28 min 8 min 
 

 
Choose what you do: 

 Board TRN1 

 Wait for TRN2 
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Situation 7 

 
You have arrived at the platform at around 10:30AM.  

There are two identical trains (TRN1,TRN2) that can take you to your 
destination. 

There is no delay on either train. 

 
You have waited for 10 minutes since your arrival at the platform. 

TRN1 has arrived. 

  

 
TRN1 TRN2 

Time remaining 0’00” 4’00” 

Travel time 14 min 8 min 
 

 
Choose what you do: 

 Board TRN1 

 Wait for TRN2 

 
Situation 8 

 
You have arrived at the platform at around 10:30AM.  

There are two identical trains (TRN1,TRN2) that can take you to 
your destination. 

Both trains are delayed by 10 minutes from their scheduled arrival 
time. 

 
You have waited for 10 minutes since your arrival at the platform. 

TRN1 has arrived. 

  

 
TRN1 TRN2 

Time remaining 0’00” 10’00” 

Travel time 28 min 4 min 
 

 
Choose what you do: 

 Board TRN1 

 Wait for TRN2 
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Situation 9 

 
You have arrived at the platform at around 10:30AM.  

There are two identical trains (TRN1,TRN2) that can take you to your 
destination. 

Both trains are delayed by 15 minutes from their scheduled arrival 
time. 

 
You have waited for 10 minutes since your arrival at the platform. 

TRN1 has arrived. 

  

 
TRN1 TRN2 

Time remaining 0’00” 4’00” 

Travel time 28 min 8 min 
 

 
Choose what you do: 

 Board TRN1 

 Wait for TRN2 

 
Situation 10 

 
You have arrived at the platform at around 10:30AM.  

There are two identical trains (TRN1,TRN2) that can take you to 
your destination. 

Both trains are delayed by 10 minutes from their scheduled arrival 
time. 

 
You have waited for 15 minutes since your arrival at the platform. 

TRN1 has arrived. 

  

 
TRN1 TRN2 

Time remaining 0’00” 10’00” 

Travel time 14 min 8 min 
 

 
Choose what you do: 

 Board TRN1 

 Wait for TRN2 
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Situation 11 

 
You have arrived at the platform at around 10:30AM.  

There are two identical trains (TRN1,TRN2) that can take you to your 
destination. 

Both trains are delayed by 10 minutes from their scheduled arrival 
time. 

 
You have just arrived at the platform. 

TRN1 has arrived. 

  

 
TRN1 TRN2 

Time remaining 0’00” 4’00” 

Travel time 14 min 4 min 
 

 
Choose what you do: 

 Board TRN1 

 Wait for TRN2 

 
Situation 12 

 
You have arrived at the platform at around 10:30AM.  

There are two identical trains (TRN1,TRN2) that can take you to 
your destination. 

There is no delay on either train. 

 
You have waited for 15 minutes since your arrival at the platform. 

TRN1 has arrived. 

  

 
TRN1 TRN2 

Time remaining 0’00” 4’00” 

Travel time 28 min 4 min 
 

 
Choose what you do: 

 Board TRN1 

 Wait for TRN2 
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Situation 13 

 
You have arrived at the platform at around 10:30AM.  

There are two identical trains (TRN1,TRN2) that can take you to your 
destination. 

Both trains are delayed by 5 minutes from their scheduled arrival 
time. 

 
You have waited for 10 minutes since your arrival at the platform. 

TRN1 has arrived. 

  

 
TRN1 TRN2 

Time remaining 0’00” 10’00” 

Travel time 14 min 4 min 
 

 
Choose what you do: 

 Board TRN1 

 Wait for TRN2 

 
Situation 14 

 
You have arrived at the platform at around 10:30AM.  

There are two identical trains (TRN1,TRN2) that can take you to 
your destination. 

There is no delay on either train. 

 
You have just arrived at the platform. 

TRN1 has arrived. 

  

 
TRN1 TRN2 

Time remaining 0’00” 10’00” 

Travel time 28 min 8 min 
 

 
Choose what you do: 

 Board TRN1 

 Wait for TRN2 
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Situation 15 

 
You have arrived at the platform at around 10:30AM.  

There are two identical trains (TRN1,TRN2) that can take you to your 
destination. 

Both trains are delayed by 5 minutes from their scheduled arrival 
time. 

 
You have waited for 5 minutes since your arrival at the platform. 

TRN1 has arrived. 

  

 
TRN1 TRN2 

Time remaining 0’00” 4’00” 

Travel time 14 min 8 min 
 

 
Choose what you do: 

 Board TRN1 

 Wait for TRN2 

 
Situation 16 

 
You have arrived at the platform at around 10:30AM.  

There are two identical trains (TRN1,TRN2) that can take you to 
your destination. 

Both trains are delayed by 15 minutes from their scheduled arrival 
time. 

 
You have waited for 5 minutes since your arrival at the platform. 

TRN1 has arrived. 

  

 
TRN1 TRN2 

Time remaining 0’00” 10’00” 

Travel time 28 min 4 min 
 

 
Choose what you do: 

 Board TRN1 

 Wait for TRN2 
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Section 0 

 

On average, how many days in a 
week do you travel with [PTN]? 

 
        
0 1 2 3 4 5 6 7 

 
Usually, what is the purpose of 
your trip when using [PTN] 

Commuting to work  

Commuting to education  

Errands (e.g., grocery 
shopping, going to the bank, 
etc.) 

 

Recreational visits (e.g., 
visiting friends, 
sightseeing) 

 

 

Section 1 

 

Situation 
# 

Board 
TRN1 

Wait for 
TRN2 

Example   

1   

2   

3   

4   

5   

6   

7   

8   

Situation 
# 

Board 
TRN1 

Wait for 
TRN2 

Example   

9   

10   

11   

12   

13   

14   

15   

16   
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Section 2 

Please indicate how much you agree with the following statements: 

Once I make a decision, I 
don’t look back. 

       
Completely 
Disagree      Completely 

Agree 
 

Whenever I make a choice, 
I’m curious about what 
would have happened if I 
had chosen differently. 

       
Completely 
Disagree      Completely 

Agree 
 

Whenever I make a choice, I 
try to get information 
about how the other 
alternatives turned out. 

       
Completely 
Disagree      Completely 

Agree 
 

If I make a choice and it 
turns out well, I still 
feel like something of a 
failure if I find out that 
another choice would have 
turned out better. 

       
Completely 
Disagree      Completely 

Agree 
 

When I think about how I’m 
doing in life, I often 
assess opportunities I have 
passed up. 

       
Completely 
Disagree      Completely 

Agree 
 

  



Deliverable 2.3: Modelling framework 
for analysing users’ choices Page 120 of 121  

 

Section 3 

How reliable do you feel is 
the train arrival information? 

       
Not 

reliable      Extremely 
reliable 

 

How reliable do you feel is 
[PTN] in general? 

       
Not 

reliable      Extremely 
reliable 

 

When you are at [a/an PTN] 
platform, to what extent is 
your perception of reliability 
(for your trip) affected if 
the next two consecutive 
trains that you can take to 
your destination are delayed? 

       
Not 

affected 
at all 

     Strongly 
affected  

 

Usually, how engaged are you 
with the activity you perform 
while waiting at a railway 
platform? 

       
Not 

engaged 
at all 

     Highly 
engaged  

 

Usually, do you plan the time 
you leave from your home in 
order to minimize waiting time 
at the platform? 

  
Yes No 

 

If you answered yes: 
How many minutes before the 
planned departure time of your 
train do you usually plan to 
arrive at the platform? 

_____ 
(please fill an answer) 

 
 

Section 4 

Select your age range: 
 
       
<18 18-24 25-34 34-44 45-54 55-64 >64 
 
Select your gender: 

 
  

Male Female 
 

Indicate your personal annual net income: 
 

      
Not working Lowest Lower Medium Higher Highest 
 
Select the degree of urbanisation of your home: 

     
1 

Rural 
2 3 4 5 

Urban 
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